scispace - formally typeset
Search or ask a question
Topic

Ionic polymerization

About: Ionic polymerization is a research topic. Over the lifetime, 8300 publications have been published within this topic receiving 205025 citations.


Papers
More filters
Book
01 Jan 1981
TL;DR: In this paper, the authors present an overview of the properties of polymers and their applications in the literature, including the following: 1.1 Types of Polymers and Polymerization. 2.3 Linear, Branched, and Crosslinked Polymers.
Abstract: Preface. 1. Introduction. 1.1 Types of Polymers and Polymerizations. 1.2 Nomenclature of Polymers. 1.3 Linear, Branched, and Crosslinked Polymers. 1.4 Molecular Weight. 1.5 Physical State. 1.6 Applications of Polymers. 2. Step Polymerization. 2.1 Reactivity of Functional Groups. 2.2 Kinetics of Step Polymerization. 2.3 Accessibility of Functional Groups. 2.4 Equilibrium Considerations. 2.5 Cyclization versus Linear Polymerization. 2.6 Molecular Weight Control in Linear Polymerization. 2.7 Molecular Weight Distribution in Linear Polymerization. 2.8 Process Condition. 2.9 Multichain Polymerization. 2.10 Crosslinking. 2.11 Molecular Weight Distributions in Nonlinear Polymerizations. 2.12 Crosslinking Technology. 2.13 Step Copolymerization. 2.14 High-Performance Polymers. 2.15 Inorganic and Organometallic Polymers. 2.16 Dendric (Highly Branched) Polymers. 3. Radical Chain Polymerization. 3.1 Nature and Radical Chain Polymerization. 3.2 Structural Arrangement of Monomer Units. 3.3 Rate of Radical Chain Polymerization. 3.4 Initiation. 3.5 Molecular Weight. 3.6 Chain Transfer. 3.7 Inhibition and Retardation. 3.8 Determination of Absolute Rate Constants. 3.9 Energetic Characteristics. 3.10 Autoacceleration. 3.11 Molecular Weight Distribution. 3.12 Effect of Pressure. 3.13 Process Conditions. 3.14 Specific Commercial Polymers. 3.15 Living Radical Polymerization. 3.16 Other Polymerizations. 4. Emulsion Polymerization. 4.1 Description of Process. 4.2 Quantitative Aspects. 4.3 Other Characteristics of Emulsion Polymerization. 5. Ionic Chain Polymerization. 5.1 Comparison of Radical and Ionic Polymerization. 5.2 Cationic Polymerization of the Carbon-Carbon Double Bond. 5.3 Anionic Polymerization of the Carbon-Carbon Double. 5.4 Block and Other Polymer Architecture. 5.5 Distinguishing Between Radical, Cationic, and Anionic Polymerizations. 5.6 Carbonyl Polymerization. 5.7 Miscellaneous Polymerizations. 6. Chain Copolymerization. 6.1 General Considerations. 6.2 Copolymer Composition. 6.3 Radical Copolymerization. 6.4 Ionic Copolymerization. 6.5 Deviations from Terminal Copolymerization Model. 6.6 Copolymerizations Involving Dienes. 6.7 Other Copolymerizations. 6.8 Applications of Copolymerizations. 7. Ring-Opening Polymerization. 7.1 General Characteristics. 7.2 Cyclic Ethers. 7.3 Lactams. 7.4 N-Carboxy-alphaAmino Acid Anhydrides. 7.5 Lactones. 7.6 Nitrogen Heterocyclics. 7.7 Sulfur Heterocyclics. 7.8 Cycloalkenes. 7.9 Miscellaneous Oxygen Heterocyclics. 7.10 Other Ring-Opening Polymerizations. 7.11 Inorganic and Partially Inorganic Polymers. 7.12 Copolymerization. 8. Stereochemistry of Polymerizaton. 8.1 Types of Stereoisomerism in Polymers. 8.2 Properties of Stereoregular Polymers. 8.3 Forces of Stereoregulation in Alkene Polymerization. 8.4 Traditional Ziegler-Natta Polymerization of Nonpolar Alkene Monomers. 8.5 Metallocene Polymerization of Nonpolar Alkene Monomers. 8.6 Other Hydrocarbon Monomers. 8.7 Copolymerization. 8.8 Postmetallocene: Chelate Initiators. 8.9 Living Polymerization. 8.10 Polymerization of 1,3-Dienes. 8.11 Commercial Applications. 8.12 Polymerization of Polar Vinyl Monomers. 8.13 Alehydes. 8.14 Optical Activity in Polymers. 8.15 Ring-Opening Polymerization. 8.16 Statistical Models of Propagation. 9. Reactions of Polymers. 9.1 Principles of Polymers Reactivity. 9.2 Crosslinking. 9.3 Reactions of Cellulose. 9.4 Reactions of Poly(vinyl) acetate). 9.5 Halogenation. 9.6 Aromatic Substitution. 9.7 Cyclization. 9.8 Other Reactions. 9.9 Graft Copolymers. 9.10 Block Copolymers. 9.11 Polymers as Carriers or Supports. 9.12 Polymer Reagents. 9.13 Polymer Catalysts. 9.14 Polymer Substrates. Index.

4,933 citations

Book
01 Jan 1995
TL;DR: In this paper, Free-Radical Chain-Growth Polymerization (FRCG) and Ionic chain-growth polymers (Ionic chain growth polymers) are discussed.
Abstract: Physical Properties and Physical Chemistry of Polymers.- Free-Radical Chain-Growth Polymerization.- Ionic Chain-Growth Polymerization.- Ring-Opening Polymerizations.- Common Chain-Growth Polymers.- Step-Growth Polymerization and Step-Growth Polymers.- Naturally Occurring Polymers.- Reactivity and Chemical Modifications of Polymers.- Polymeric Materials for Special Applications.

2,239 citations


Network Information
Related Topics (5)
Copolymer
84K papers, 1.2M citations
93% related
Polymerization
147.9K papers, 2.7M citations
92% related
Monomer
88.6K papers, 1.1M citations
89% related
Polymer
131.4K papers, 2.6M citations
87% related
Glass transition
40.7K papers, 1M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202214
20214
20201
20198
201813