scispace - formally typeset
Search or ask a question
Topic

Ionic radius

About: Ionic radius is a research topic. Over the lifetime, 5932 publications have been published within this topic receiving 196470 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Abstract: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb5+-O and Mo6+-O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li+-O, Na+-O, and Ag+-O distances in a predictable manner. Covalence strongly shortens Fe2+-X, Co2+-X, Ni2+-X, Mn2+-X, Cu+-X, Ag+-X, and M-H- bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn2+-X, Cd2+-X, In2+-X, pb2+-X, and TI+-X. Bonds with delocalized electrons and therefore metallic character, e.g. Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

51,997 citations

Journal ArticleDOI
TL;DR: A set of empirical atomic radii has been set up, such that the sum of the radii of two atoms forming a bond in a crystal or molecule gives an approximate value of the internuclear distance.
Abstract: A set of empirical atomic radii has been set up, such that the sum of the radii of two atoms forming a bond in a crystal or molecule gives an approximate value of the internuclear distance. These radii give fair agreement with experiment in over 1200 cases of bonds in all types of crystals and molecules, with an average deviation of about 0.12 A. The radii are similar to a set suggested by W. L. Bragg in 1920, but refined by consideration of many more crystals. They hold for covalent, metallic, and ionic binding equally well. These radii agree remarkably well with calculated radii of maximum radial charge density in the outermost shells of the atoms, as taken from previously unpublished calculations of D. Liberman, J. T. Waber, and D. T. Cromer, of the Los Alamos Laboratory, by relativistic self‐consistent field calculation, using the exchange correction suggested in 1951 by the present author. There is discussion of the probable reason for this agreement, and discussion of the relation of these radii to the ionic radii of Pauling, Zachariasen, and others, and the tetrahedral and metallic radii of Pauling.

1,864 citations

Journal ArticleDOI
TL;DR: In this paper, the aqueous ionic radii of 35 ions were calculated from published data of the average distances between the ions and the nearest water molecules, obtained by diffraction and computer simulation methods.
Abstract: The aqueous ionic radii of 35 ions have been calculated from published data of the average distances between the ions and the nearest water molecules, obtained by diffraction and computer simulation methods.

1,306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the properties of trace elements in aqueous systems and showed that trace element fractionation is not solely dependent on ionic charge and radius, but is also controlled by the electron configuration and the type of complexing ligand, since the latter two determine the character of the chemical bonding in the various complexes.
Abstract: The parameters which control the behaviour of isovalent trace elements in magmatic and aqueous systems have been investigated by studying the distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium. If a geochemical system is characterized by CHArge-and-RAdius-Controlled (CHARAC) trace element behaviour, elements of similar charge and radius, such as the Y-Ho and Zr-Hf twin pairs, should display extremely coherent behaviour, and retain their respective chondritic ratio. Moreover, normalized patterns of REE(III) should be smooth functions of ionic radius and atomic number. Basic to intermediate igneous rocks show Y/Ho and Zr/Hf ratios which are close to the chondritic ratios, indicating CHARAC behaviour of these elements in pure silicate melts. In contrast, aqueous solutions and their precipitates show non-chondritic Y/Ho and Zr/Hf ratios. An important process that causes trace element fractionation in aqueous media is chemical complexation. The complexation behaviour of a trace element, however, does not exclusively depend on its ionic charge and radius, but is additionally controlled by its electron configuration and by the type of complexing ligand, since the latter two determine the character of the chemical bonding (covalent vs electrostatic) in the various complexes. Hence, in contrast to pure melt systems, aqueous systems are characterized by non-CHARAC trace element behaviour, and electron structure must be considered as an important additional parameter. Unlike other magmatic rocks, highly evolved magmas rich in components such as H2O, Li, B, F, P, and/or Cl often show non-chondritic Y/Ho and Zr/Hf ratios, and “irregular” REE patterns which are sub-divided into four concave-upward segments referred to as “tetrads”. The combination of non-chondritic Y/Ho and Zr/Hf ratios and lanthanide tetrad effect, which cannot be adequately modelled with current mineral/melt partition coefficients which are smooth functions of ionic radius, reveals that non-CHARAC trace element behaviour prevails in highly evolved magmatic systems. The behaviour of high field strength elements in this environment is distinctly different from that in basic to intermediate magmas (i.e. pure silicate melts), but closely resembles trace element behaviour in aqueous media. “Anomalous” behaviour of Y and REEs, and of Zr and Hf, which are hosted by different minerals, and the fact that these minerals show “anomalous” trace element distributions only if they crystallized from highly evolved magmas, indicate that non-CHARAC behaviour is a reflection of specific physicochemical properties of the magma. This supports models which suggest that high-silica magmatic systems which are rich in H2O, Li, B, F, P, and/or Cl, are transitional between pure silicate melts and hydrothermal fluids. In such a transitional system non-CHARAC behaviour of high field strength elements may be due to chemical complexation with a wide variety of ligands such as non-bridging oxygen, F, B, P, etc., leading to absolute and relative mineral/melt or mineral/aqueous-fluid partition coefficients that are extremely sensitive to the composition and structure of this magma. Hence, any petrogenetic modelling of such magmatic rocks, which utilizes partition coefficients that have not been determined for the specific igneous suite under investigation, may be questionable. But Y/Ho and Zr/Hf ratios provide information on whether or not the evolution of felsic igneous rocks can be quantitatively modelled: samples showing non-chondritic Y/Ho and Zr/Hf ratios or even the lanthanide tetrad effect should not be considered for modelling. However, the most important result of this study is that Y/Ho and Zr/Hf ratios may be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been deposited from or modified by silicate melts or aqueous fluids.

1,200 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Amorphous solid
117K papers, 2.2M citations
89% related
Oxide
213.4K papers, 3.6M citations
88% related
Band gap
86.8K papers, 2.2M citations
87% related
Thin film
275.5K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022373
2021239
2020232
2019234
2018225