scispace - formally typeset
Search or ask a question
Topic

Ionization

About: Ionization is a research topic. Over the lifetime, 67763 publications have been published within this topic receiving 1376985 citations. The topic is also known as: ionisation.


Papers
More filters
Journal ArticleDOI
10 Aug 1995-Nature
TL;DR: In this paper, the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers is shown to provide both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes.
Abstract: THE photovoltaic effect involves the production of electrons and holes in a semiconductor device under illumination, and their subsequent collection at opposite electrodes. In many inorganic semiconductors, photon absorption produces free electrons and holes directly1. But in molecular semiconductors, absorption creates electrona¤-hole pairs (excitons) which are bound at room temperature2, so that charge collection requires their dissociation. Exciton dissociation is known to be efficient at interfaces between materials with different electron affinities and ionization potentials, where the electron is accepted by the material with larger electron affinity and the hole by the material with lower ionization potential3. A two-layer diode structure can thus be used, in which excitons generated in either layer diffuse towards the interface between the layers. However, the exciton diffusion range is typically at least a factor of 10 smaller than the optical absorption depth, thus limiting the efficiency of charge collection3. Here we show that the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers provides both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes. Devices using thin films of these polymer mixtures show promise for large-area photodetectors.

3,165 citations

Journal ArticleDOI
TL;DR: A simple, analytic, and fully quantum theory of high-harmonic generation by low-frequency laser fields is presented and the exact quantum-mechanical formula for the harmonic cutoff that differs from the phenomenological law Ip+3.17Up is presented.
Abstract: We present a simple, analytic, and fully quantum theory of high-harmonic generation by low-frequency laser fields. The theory recovers the classical interpretation of Kulander et al. in Proceedings of the SILAP III Works hop, edited by B. Piraux (Plenum, New York, 1993) and Corkum [Phys. Rev. Lett. 71, 1994 (1993)] and clearly explains why the single-atom harmonic-generation spectra fall off at an energy approximately equal to the ionization energy plus about three times the oscillation energy of a free electron in the field. The theory is valid for arbitrary atomic potentials and can be generalized to describe laser fields of arbitrary ellipticity and spectrum. We discuss the role of atomic dipole matrix elements, electron rescattering processes, and of depletion of the ground state. We present the exact quantum-mechanical formula for the harmonic cutoff that differs from the phenomenological law Ip+3.17Up, where Ip is the atomic ionization potential and Up is the ponderomotive energy, due to the account for quantum tunneling and diffusion effects.

3,007 citations

Journal ArticleDOI
TL;DR: The spin-density-functional (SDF) formalism has been used for the interpretation of approximate versions of the theory, in particular the local-spin-density (LSD) approximation, which is formally valid only in the limit of slow and weak spatial variation in the density as discussed by the authors.
Abstract: The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is presented in its thermodynamic version. The ground-state formalism is extended to more general Hamiltonians and to the lowest excited state of each symmetry. A relation between the exchange-correlation functional and the pair correlation function is derived. It is used for the interpretation of approximate versions of the theory, in particular the local-spin-density (LSD) approximation, which is formally valid only in the limit of slow and weak spatial variation in the density. It is shown, however, to give good account for the exchange-correlation energy also in rather inhomogeneous situations, because only the spherical average of the exchange-correlation hole influences this energy, and because it fulfills the sum rule stating that this hole should contain only one charge unit. A further advantage of the LSD approximation is that it can be systematically improved. Calculations on the homogeneous spin-polarized electron liquid are reported on. These calculations provide data in the form of interpolation formulas for the exchange-correlation energy and potentials, to be used in the LSD approximation. The ground-state properties are obtained from the Galitskii-Migdal formula, which relates the total energy to the one-electron spectrum, obtained with a dynamical self-energy. The self-energy is calculated in an electron-plasmon model where the electron is assumed to couple to one single mode. The potential for excited states is obtained by identifying the quasiparticle peak in the spectrum. Correlation is found to significantly weaken the spin dependence of the potentials, compared with the result in the Hartree-Fock approximation. Charge and spin response functions are calculated in the long-wavelength limit. Correlation is found to be very important for properties which involve a change in the spinpolarization. For atoms, molecules, and solids the usefulness of the SDF formalism is discussed. In order to explore the range of applicability, a few applications of the LSD approximation are made on systems for which accurate solutions exist. The calculated ionization potentials, affinities, and excitation energies for atoms propose that the valence electrons are fairly well described, a typical error in the ionization energy being 1/2 eV. The exchange-correlation holes of two-electron ions are discussed. An application to the hydrogen molecule, using a minimum basis set, shows that the LSD approximation gives good results for the energy curve for all separations studied, in contrast to the spin-independent local approximation. In particular, the error in the binding energy is only 0.1 eV, and bond breaking is properly described. For solids, the SDF formalism provides a framework for band models of magnetism. An estimate of the splitting between spin-up and spin-down energy bands of a ferromagnetic transition metal shows that the LSD approximation gives a correction of the correct sign and order of magnitude to published $X\ensuremath{\alpha}$ results. To stimulate further use of the SDF formalism in the LSD approximation, the paper is self-contained and describes the necessary formulas and input data for the potentials.

2,763 citations

Journal ArticleDOI
TL;DR: In this paper, a broad range of experiments are reviewed and compared with theory, including the behavior of the mass-abundance spectra, polarizabilities, ionization potentials, photoelectron spectra and optical spectra.
Abstract: The study of simple metal clusters has burgeoned in the last decade, motivated by the growing interest in the evolution of physical properties from the atom to the bulk solid, a progression passing through the domain of atomic clusters. On the experimental side, the rapid development of new techniques for producing the clusters and for probing and detecting them has resulted in a phenomenal increase in our knowledge of these systems. For clusters of the simplest metals, the alkali and noble metals, the electronic structure is dominated by the number of valence electrons, and the ionic cores are of secondary importance. These electrons are delocalized, and the electronic system exhibits a shell structure that is closely related to the well-known nuclear shell structure. In this article the results from a broad range of experiments are reviewed and compared with theory. Included are the behavior of the mass-abundance spectra, polarizabilities, ionization potentials, photoelectron spectra, optical spectra, and fragmentation phenomena.

2,469 citations

Book
01 Jan 1978
TL;DR: In this paper, the authors present an overview of the physical properties of Grains and their properties in terms of elastic collisions, grain alignment, and overall equilibrium in a stellar environment.
Abstract: Interstellar Matter-- An Overview. Elastic Collisions and Kinetic Equilibrium. Radiative Processes. Excitation. Ionization and Dissociation. Kinetic Temperature. Optical Properties of Grains. Polarization and Grain Alignment. Physical Properties of Grains. Dynamical Principles. Overall Equilibrium. Explosive Motions. Gravitational Motion. Symbols. Index.

2,462 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
93% related
Ion
107.5K papers, 2M citations
92% related
Spectroscopy
71.3K papers, 1.5M citations
91% related
Excited state
102.2K papers, 2.2M citations
90% related
Hydrogen
132.2K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,158
20222,616
20211,112
20201,349
20191,410
20181,390