scispace - formally typeset
Search or ask a question
Topic

Ionization

About: Ionization is a research topic. Over the lifetime, 67763 publications have been published within this topic receiving 1376985 citations. The topic is also known as: ionisation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive set of FDCSs for single ionization of atoms by ion-impact, the most basic atomic fragmentation reaction, brought new insight, a couple of surprises and unexpected challenges to theory at keV to GeV collision energies.
Abstract: Recoil-ion and electron momentum spectroscopy is a rapidly developing technique that allows one to measure the vector momenta of several ions and electrons resulting from atomic or molecular fragmentation. In a unique combination, large solid angles close to 4π and superior momentum resolutions around a few per cent of an atomic unit (a.u.) are typically reached in state-of-the art machines, so-called reaction-microscopes. Evolving from recoil-ion and cold target recoil-ion momentum spectroscopy (COLTRIMS), reaction-microscopes—the `bubble chambers of atomic physics'—mark the decisive step forward to investigate many-particle quantum-dynamics occurring when atomic and molecular systems or even surfaces and solids are exposed to time-dependent external electromagnetic fields. This paper concentrates on just these latest technical developments and on at least four new classes of fragmentation experiments that have emerged within about the last five years. First, multi-dimensional images in momentum space brought unprecedented information on the dynamics of single-photon induced fragmentation of fixed-in-space molecules and on their structure. Second, a break-through in the investigation of high-intensity short-pulse laser induced fragmentation of atoms and molecules has been achieved by using reaction-microscopes. Third, for electron and ion-impact, the investigation of two-electron reactions has matured to a state such that the first fully differential cross sections (FDCSs) are reported. Fourth, comprehensive sets of FDCSs for single ionization of atoms by ion-impact, the most basic atomic fragmentation reaction, brought new insight, a couple of surprises and unexpected challenges to theory at keV to GeV collision energies. In addition, a brief summary on the kinematics is provided at the beginning. Finally, the rich future potential of the method is briefly envisaged.

1,375 citations

Journal ArticleDOI
20 Jun 2008-Science
TL;DR: The confinement of the nonlinear interaction of light with matter to a single wave cycle is reported on and its utility for time-resolved and strong-field science is demonstrated.
Abstract: Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

1,330 citations

Journal ArticleDOI
TL;DR: A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed in this paper, including the nonequilibrium thermochemical relaxation phenomena behind a wave surrounding the flying object.
Abstract: A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed, including the nonequilibrium thermochemical relaxation phenomena occurring behind a shock wave surrounding the flying object, problems related to aerobraking maneuver, the radiation phenomena for shock velocities of up to 12 km/sec, and the determination of rate coefficients for ionization reactions and associated electron-impact ionization reactions. Results of experiments are presented in form of graphs and tables, giving data on the reaction rate coefficients for air, the ionization distances, thermodynamic properties behind a shock wave, radiative heat flux calculations, Damkoehler numbers for the ablation-product layer, together with conclusions.

1,287 citations

Journal ArticleDOI
TL;DR: In this article, the power and elegance of mass spectrometric analysis applicable to the large and fragile polar molecules that play such vital roles in biological systems was demonstrated. But the technique was not suitable for the analysis of complex biological systems.
Abstract: Electrospray ionization has recently emerged as a powerful technique for producing intact ions in vacuo from large and complex species in solution. To an extent greater than has previously been possible with the more familiar "soft" ionization methods, this technique makes the power and elegance of mass spectrometric analysis applicable to the large and fragile polar molecules that play such vital roles in biological systems. The distinguishing features of electrospray spectra for large molecules are coherent sequences of peaks whose component ions are multiply charged, the ions of each peak differing by one charge from those of adjacent neighbors in the sequence. Spectra have been obtained for biopolymers including oligonucleotides and proteins, the latter having molecular weights up to 130,000, with as yet no evidence of an upper limit.

1,223 citations

Journal ArticleDOI
TL;DR: In this article, the energy spectrum of electrons produced by multiphoton ionization of xenon atoms has been analyzed with a retarding potential technique, and it has been shown that the discrete absorption of photons above the six-photon ionization threshold was observable under specified conditions.
Abstract: The energy spectrum of electrons produced by multiphoton ionization of xenon atoms has been analyzed with a retarding potential technique. We have shown that the discrete absorption of photons above the six-photon ionization threshold was observable under specified conditions. A simple model based upon inverse bremsstrahlung gives a resonable agreement with the experiments.

1,076 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
93% related
Ion
107.5K papers, 2M citations
92% related
Spectroscopy
71.3K papers, 1.5M citations
91% related
Excited state
102.2K papers, 2.2M citations
90% related
Hydrogen
132.2K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,158
20222,616
20211,112
20201,349
20191,410
20181,390