scispace - formally typeset

Ionized impurity scattering

About: Ionized impurity scattering is a(n) research topic. Over the lifetime, 2031 publication(s) have been published within this topic receiving 40790 citation(s). more

More filters

Journal ArticleDOI
Nevill Mott1, W. D. Twose1Institutions (1)
Abstract: (1961). The theory of impurity conduction. Advances in Physics: Vol. 10, No. 38, pp. 107-163. more

1,134 citations

30 Oct 1989-
Abstract: 1 Introduction.- References.- 2 Charge Transport in Semiconductors.- 2.1 Electron Dynamics.- 2.2 Energy Bands.- 2.2.1 Relationship of Energy to Wavevector.- 2.2.2 Effective Masses.- 2.2.3 Nonparabolicity.- 2.2.4 Herring and Vogt Transformation.- 2.2.5 Actual Bands of Real Semiconductors.- 2.3 Scattering Mechanisms.- 2.3.1 Classification and Physical Discussion.- 2.3.2 Fundamentals of Scattering.- 2.4 Scattering Probabilities.- 2.4.1 Phonon Scattering, Deformation-Potential Interaction.- 2.4.2 Phonon Scattering, Electrostatic Interaction.- 2.4.3 Ionized Impurity Scattering.- 2.4.4 Carrier-Carrier Scattering.- 2.5 Transport Equation.- 2.6 Linear Response and the Relaxation Time Approximation.- 2.6.1 Relaxation Times for the Various Scattering Mechanisms.- 2.6.2 Carrier Mobilities in Various Materials.- 2.7 Diffusion, Noise, and Velocity Autocorrelation Function.- 2.7.1 Basic Macroscopic Equations of Diffusion.- 2.7.2 Diffusion, Autocorrelation Function, and Noise.- 2.7.3 Electron Lifetime and Diffusion Length.- 2.8 Hot Electrons.- 2.9 Transient Transport.- 2.10 The Two-dimensional Electron Gas.- 2.10.1 Subband Levels and Wavefunctions.- 2.10.2 Scattering Rates.- References.- 3 The Monte Carlo Simulation.- 3.1 Fundamentals.- 3.2 Definition of the Physical System.- 3.3 Initial Conditions.- 3.4 The Free Flight, Self Scattering.- 3.5 The Scattering Process.- 3.6 The Choice of the State After Scattering.- 3.6.1 Phonon Scattering, Deformation-Potential Interaction.- 3.6.2 Phonon Scattering, Electrostatic Interaction.- 3.6.3 Ionized Impurity Scattering.- 3.6.4 Carrier-Carrier Scattering.- 3.7 Collection of Results for Steady-State Phenomena.- 3.7.1 Time Averages.- 3.7.2 Synchronous Ensemble.- 3.7.3 Statistical Uncertainty.- 3.8 The Ensemble Monte Carlo (EMC).- 3.9 Many Particle Effects.- 3.9.1 Carrier-Carrier Scattering.- 3.9.2 Molecular Dynamics and Monte Carlo Method.- 3.9.3 Degeneracy in Monte Carlo Calculations.- 3.10 Monte Carlo Simulation of the 2DEG.- 3.11 Special Topics.- 3.11.1 Periodic Fields.- 3.11.2 Diffusion, Autocorrelation Function, and Noise.- 3.11.3 Ohmic Mobility.- 3.11.4 Impact Ionization.- 3.11.5 Magnetic Fields.- 3.11.6 Optical Excitation.- 3.11.7 Quantum Mechanical Corrections.- 3.12 Variance-reducing Techniques.- 3.12.1 Variance Due to Thermal Fluctuations.- 3.12.2 Variance Due to Valley Repopulation.- 3.12.3 Variance Related to Improbable Electron States.- 3.13 Comparison with Other Techniques.- 3.13.1 Analytical Techniques.- 3.13.2 The Iterative Technique.- 3.13.3 Comparison of the Different Techniques.- References.- 4 Review of Semiconductor Devices.- 4.1 Introduction.- 4.2 Historical Evolution of Semiconductor Devices.- 4.2.1 Evolution of Si Devices.- 4.2.2 Evolution of GaAs Devices.- 4.2.3 Technological Features.- 4.2.4 Scaling and Miniaturization.- 4.3 Physical Basis of Semiconductor Devices.- 4.3.1 p-n Junction.- 4.3.2 Bipolar Transistors.- 4.3.3 Heterojunction Bipolar Transistor.- 4.3.4 Metal-Semiconductor Contacts.- 4.3.5 Metal-Semiconductor Field-Effect Transistor.- 4.3.6 Metal-Oxide-Semiconductor Field-Effect Transistor.- 4.3.7 High Electron Mobility Transistor.- 4.3.8 Hot Electron Transistors.- 4.3.9 Permeable Base Transistor.- 4.4 Comparison of Semiconductor Devices.- 4.4.1 Device Parameters.- 4.4.2 Comparison of Semiconductor Devices.- References.- 5 Monte Carlo Simulation of Semiconductor Devices.- 5.1 Introduction.- 5.2 Geometry of the System.- 5.2.1 Boundary Conditions.- 5.2.2 Grid Definition.- 5.2.3 Superparticles.- 5.3 Particle-Mesh Force Calculation.- 5.3.1 Particle-Mesh Calculation in One Dimension.- 5.3.2 Charge Assignment Schemes in Two Dimensions.- 5.4 Poisson Solver and Field Distribution.- 5.4.1 Finite Difference Scheme.- 5.4.2 Matrix Methods.- 5.4.3 Rapid Elliptic Solvers (RES).- 5.4.4 Iterative Methods.- 5.4.5 Calculation of the Electric Field.- 5.4.6 The Collocation Method.- 5.5 The Monte Carlo Simulation of Semiconductor Devices.- 5.5.1 Initial Conditions.- 5.5.2 Time Cycles.- 5.5.3 Free Flight.- 5.5.4 Scattering.- 5.5.5 Carrier-Carrier Scattering.- 5.5.6 Degenerate Statistics.- 5.5.7 Statistics.- 5.5.8 Static Characteristics.- 5.5.9 A.C. Characteristics.- 5.5.10 Noise.- References.- 6 Applications.- 6.1 Introduction.- 6.2 Diodes.- 6.2.1 n+-n-n+ Diodes.- 6.2.2 Schottky Diode.- 6.3 MESFET.- 6.3.1 Short Channel Effects.- 6.3.2 Geometry Effects.- 6.3.3 Space-Charge Injection FET.- 6.3.4 Conclusions.- 6.4 HEMT and Heterojunction Real Space Transfer Devices.- 6.4.1 HEMT.- 6.4.2 Real-Space Transfer Devices.- 6.4.3 Velocity-Modulation Field Effect Transistor.- 6.5 Bipolar Transistor.- 6.6 HBT.- 6.7 MOSFET and MISFET.- 6.7.1 MOSFET.- 6.7.2 GaAs Injection-modulated MISFET.- 6.7.3 Conclusions.- 6.8 Hot Electron Transistors.- 6.8.1 The THETA Device.- 6.8.2 GaAs FET with Hot-Electron Injection Structure.- 6.8.3 Planar-doped-Barrier Transistors.- 6.9 Permeable Base Transistor.- 6.10 Comparison with Traditional Simulators.- References.- Appendix A. Numerical Evaluation of Some Integrals of Interest.- References.- Appendix B. Generation of Random Numbers.- References. more

1,038 citations

01 Jan 1999-
Abstract: 1. Introduction.- 2. General Properties of Nitrides.- 2.1 Crystal Structure of Nitrides.- 2.2 Gallium Nitride.- 2.2.1 Chemical Properties of GaN.- 2.2.2 Thermal and Mechanical Properties of GaN.- 2.3 Aluminum Nitride.- 2.3.1 Thermal and Chemical Properties of AlN.- 2.3.2 Mechanical Properties of AlN..- 2.3.3 Electrical Properties of AlN.- 2.3.4 Optical Properties of AlN.- 2.4 Indium Nitride.- 2.4.1 Crystal Structure of InN.- 2.4.2 Mechanical and Thermal Properties of InN.- 2.4.3 Electrical Properties of InN.- 2.4.4 Optical Properties of InN.- 2.5 Ternary and Quaternary Alloys.- 2.5.1 AlGaN Alloy.- 2.5.2 InGaN Alloy.- 2.5.3 InAIN Alloy.- 2.6 Substrates for Nitride Epitaxy.- 2A Appendix: Fundamental Data for Nitride Systems.- 3. Electronic Band Structure of Bulk and QW Nitrides.- 3.1 Band-Structure Calculations.- 3.2 Effect of Strain on the Band Structure of GaN.- 3.3 k*p Theory and the Quasi-Cubic Model.- 3.4 Quasi-Cubic Approximation.- 3.5 Confined States.- 3.6 Conduction Band.- 3.7 Valence Band.- 3.8 Exciton Binding Energy in Quantum Wells.- 3.9 Polarization Effects.- 3A Appendix.- 4. Growth of Nitride Semiconductors.- 4.1 Bulk Growth.- 4.2 Substrates Used.- 4.2.1 Conventional Substrates.- 4.2.2 Compliant Substrates.- 4.2.3 Van der Waals Substrates.- 4.3 Substrate Preparation.- 4.4 Substrate Temperature.- 4.5 Epitaxial Relationship to Sapphire.- 4.6 Growth by Hydride Vapor Phase Epitaxy (HVPE).- 4.7 Growth by OMVPE (MOCVD).- 4.7.1 Sources.- 4.7.2 Buffer Layers.- 4.7.3 Lateral Growth.- 4.7.4 Growth on Spinel (MgAl2O4).- 4.8 Molecular Beam Epitaxy.- 4.8.1 MBE Growth Systems.- 4.8.2 Plasma-Enhanced MBE.- 4.8.3 Reactive-Ion MBE.- 4.8.4 Reactive MBE.- 4.8.5 Modeling of the MBE-Like Growth.- 4.9 Growth on 6H-SiC (0001).- 4.10 Growth on ZnO.- 4.11 Growth on GaN.- 4.12 Growth of p-Type GaN.- 4.13 Growth of n-Type InN.- 4.14 Growth of n-Type Ternary and Quaternary Alloys.- 4.15 Growth of p-Type Ternary and Quaternary Alloys.- 4.16 Critical Thickness.- 5. Defects and Doping.- 5.1 Dislocations.- 5.2 Stacking-Fault Defects.- 5.3 Point Defects and Autodoping.- 5.3.1 Vacancies, Antisites and Interstitials.- 5.3.2 Role of Impurities and Hydrogen.- 5.3.3 Optical Signature of Defects in GaN.- 5.4 Intentional Doping.- 5.4.1 n-Type Doping with Silicon, Germanium and Selenium.- 5.4.2 p-Type Doping.- a) Doping with Mg.- 5.4.3 Optical Manifestation of Group-II Dopant-Induced Defects in GaN.- a) Doping with Beryllium.- b) Doping with Mercury.- c) Doping with Carbon.- d) Doping with Zinc.- e) Doping with Calcium.- f) Doping with Rare Earths.- 5.4.4 Ion Implantation and Diffusion.- 5.5 Defect Analysis by Deep-Level Transient Spectroscopy.- 5.6 Summary.- 6. Metal Contacts to GaN.- 6.1 A Primer for Semiconductor-Metal Contacts.- 6.2 Current Flow in Metal-Semiconductor Junctions.- 6.2.1 The Regime Dominated by Thermionic Emission.- 6.2.2 Thermionic Field-Emission Regime.- 6.2.3 Direct Tunneling Regime.- 6.2.4 Leakage Current.- 6.2.5 The Case of a Forward-Biased p-n Junction.- 6.3 Resistance of an Ohmic Contact.- 6.3.1 Specific Contact Resistivity.- 6.3.2 Semiconductor Resistance.- 6.4 Determination of the Contact Resistivity.- 6.5 Ohmic Contacts to GaN.- 6.5.1 Non-Alloyed Ohmic Contacts.- 6.5.2 Alloyed Ohmic Contacts.- 6.5.3 Multi-Layer Ohmic Contacts.- 6.6 Structural Analysis.- 6.7 Observations.- 7. Determination of Impurity and Carrier Concentrations.- 7.1 Impurity Binding Energy.- 7.2 Conductivity Type: Hot Probe and Hall Measurements.- 7.3 Density of States and Carrier Concentration.- 7.4 Electron and Hole Concentrations.- 7.5 Temperature Dependence of the Hole Concentration.- 7.6 Temperature Dependence of the Electron Concentration.- 7.7 Multiple Occupancy of the Valence Bands.- 7A Appendix: Fermi Integral.- 8. Carrier Transport.- 8.1 Ionized Impurity Scattering.- 8.2 Polar-Optical Phonon Scattering.- 8.3 Piezoelectric Scattering.- 8.4 Acoustic Phonon Scattering.- 8.5 Alloy Scattering.- 8.6 The Hall Factor.- 8.7 Other Methods Used for Calculating the Mobility in n-GaN.- 8.8 Measured vis. a vis. Calculated Mobilities in GaN.- 8.9 Transport in 2D n-Type GaN.- 8.10 Transport in p-Type GaN and AlGaN.- 8.11 Carrier Transport in InN.- 8.12 Carrier Transport in AlN.- 8.12.1 Transport in Unintensionally-Doped and High-Resistivity GaN.- 8.13 Observation.- 9. The p-n Junction.- 9.1 Heterojunctions.- 9.2 Band Discontinuities.- 9.2.1 GaN/AIN Heterostructures.- 9.2.2 GaN/InN and AIN/InN.- 9.3 Electrostatic Characteristics of p-n Heterojunctions.- 9.4 Current-Voltage Characteristics on p-n Junctions.- 9.4.1 Generation-Recombination Current.- 9.4.2 Surf ace Effects.- 9.4.3 Diode Current Under Reverse Bias.- 9.4.4 Effect of the Electric Field on the Generation Current.- 9.4.5 Diffusion Current.- 9.4.6 Diode Current Under Forward Bias.- 9.5 Calculation and Experimental I-V Characteristics of GaN Based p-n Juctions.- 9.6 Concluding Remarks.- 10. Optical Processes in Nitride Semiconductors.- 10.1 Absorption and Emission.- 10.2 Band-to-Band Transitions.- 10.2.1 Excitonuc Transitions.- 10.3 Optical Transitions in GaN.- 10.3.1 Excitonic Transitions in GaN.- a) Free Excitons.- b) Bound Excitons.- c) Exciton Recombination Dynamics.- d) High Injection Levels.- 10.3.2 Free-to-Bound Transitions.- 10.3.3 Donor-Acceptor Transitions.- 10.3.4 Defect-Related Transitions.- a) Yellow Luminescence.- b) Group-II Element Related Transitions.- 10.4 Optical Properties of Nitride Heterostructures.- 10.4.1 GaN/AlGaN Heterostructures.- 10.4.2 InGaN/GaN and InGaN/InGaN Heterostructures.- 11. Light-Emitting Diodes.- 11.1 Current-Conduction Mechanism in LED-Like Structures.- 11.2 Optical Output Power.- 11.3 Losses and Efficiency.- 11.4 Visible-Light Emitting Diodes.- 11.5 Nitride LED Performance.- 11.6 On the Nature of Light Emission in Nitride-Based LEDs.- 11.6.1 Pressure Dependence of Spectra.- 11.6.2 Current and Temperature Dependence of Spectra.- 11.6.3 I-V Characteristics of Nitride LEDs.- 11.7 LED Degradation.- 11.8 Luminescence Conversion and White- Light Generation With Nitride LEDs.- 11.9 Organic LEDs.- 12. Semiconductor Lasers.- 12.1 A Primer to the Principles of Lasers.- 12.2 Fundamentals of Semiconductor Lasers.- 12.3 Waveguiding.- 12.3.1 Analytical Solution to the Waveguide Problem.- 12.3.2 Numerical Solution of the Waveguide Problem.- 12.3.3 Far-Field Pattern.- 12.4 Loss and Threshold.- 12.5 Optical Gain.- 12.5.1 Gain in Bulk Layers.- 12.5.2 Gain in Quantum Wells.- 12.6 Coulombic Effects.- 12.7 Gain Calculations for GaN.- 12.7.1 Optical Gain in Bulk GaN.- 12.7.2 Gain in GaN Quantum Wells.- 12.7.3 Gain Calculations in Wz GaN QW Without Strain.- 12.7.4 Gain Calculations in WZ QW With Strain.- 12.7.5 Gain in ZB QW Structures Without Strain.- 12.7.6 Gain in ZB QW Structures with Strain.- a) Pathways Through Excitons and Localized States.- 12.7.7 Measurement of Gain in Nitrides.- a) Gain Measurement via Optical Pumping.- b) Gain Measurement via Electrical Injection (Pump) and an Optical Probe.- 12.8 Threshold Current.- 12.9 Analysis of Injection Lasers with Simplifying Assumptions.- 12.10 Recombination Lifetime.- 12.11 Quantum Efficiency.- 12.12 Gain Spectra of InGaN Injection Lasers.- 12.13 Observations.- 12.14 A Succinct Review of the Laser Evolution in Nitrides.- References. more

835 citations

Journal ArticleDOI
Abstract: Heavily doped zinc oxide films are used as transparent and conductive electrodes, especially in thin film solar cells. Despite decades of research on zinc oxide it is not yet clear what the lower limit of the resistivity of such films is. Therefore, the electrical parameters of zinc oxide films deposited by magnetron sputtering, metal organic chemical vapour deposition and pulsed laser ablation are reviewed and related to the deposition parameters. It is found that the lowest resistivities are in the range of 1.4 to 2×10-4 Ω cm, independently of the deposition method. The highest reported Hall mobilities are about 60 cm2 V-1 s-1. The thin film electrical data are compared with the corresponding values of single crystalline zinc oxide and with that of boron and phosphorous doped crystalline silicon. From this comparison it can be seen that the dependence of the Hall mobilities on the carrier concentration n are quite similar for silicon and zinc oxide. In the region n>5×1020 cm-3, which is most important for the application of zinc oxide as a transparent and conductive electrode, phosphorous doped silicon has a mobility only slightly higher than zinc oxide. The experimental data on the electron and hole mobilities in silicon as a function of the impurity concentration have been described by a fit function (Masetti et al 1983), which can also be applied with different fitting parameters to the available zinc oxide mobility data. A comparison of the experimental data with the well known ionized impurity scattering theories of Conwell-Weisskopf (1946) and Brooks-Herring-Dingle (1955) shows that these theories are not able to describe the data very well, even if the non-parabolic band structure is taken into account. As in the case of silicon, an additional reduction of the mobility also occurs for zinc oxide for concentrations n>5×1020 cm-3, which can be ascribed qualitatively to the clustering of charge carriers connected with increased scattering due to the Z-2 dependence of the scattering cross section on the charge Z of the scattering centre. The presented review of the charge carrier transport in zinc oxide indicates that a physical limit due to ionized impurity scattering is reached for homogeneously doped layers. Due to the universal nature of this limitation it is suggested that it also applies to the other important materials indium-tin (ITO) and tin oxide. Experiments are proposed to overcome this limit. more

706 citations

Network Information
Related Topics (5)
Shubnikov–de Haas effect

2K papers, 38.1K citations

92% related
Fermi level

27.1K papers, 652.4K citations

92% related
Tunnel effect

2.4K papers, 68.5K citations

91% related

41K papers, 842.9K citations

91% related
Electronic band structure

25.9K papers, 669.5K citations

91% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Manas Ghosh

8 papers, 61 citations

Magnus Willander

5 papers, 52 citations

Hadi Arabshahi

5 papers, 11 citations

T.L. Tansley

4 papers, 72 citations

J. P. Carbotte

4 papers, 36 citations