scispace - formally typeset
Search or ask a question
Topic

IP forwarding

About: IP forwarding is a research topic. Over the lifetime, 4167 publications have been published within this topic receiving 111181 citations.


Papers
More filters
Proceedings ArticleDOI
01 Aug 2000
TL;DR: Greedy Perimeter Stateless Routing is presented, a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions and its scalability on densely deployed wireless networks is demonstrated.
Abstract: We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in per-router state than shortest-path and ad-hoc routing protocols as the number of network destinations increases. Under mobility's frequent topology changes, GPSR can use local topology information to find correct new routes quickly. We describe the GPSR protocol, and use extensive simulation of mobile wireless networks to compare its performance with that of Dynamic Source Routing. Our simulations demonstrate GPSR's scalability on densely deployed wireless networks.

7,384 citations

Proceedings ArticleDOI
21 Oct 2001
TL;DR: It is found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases, demonstrating the benefits of moving some of the control over routing into the hands of end-systems.
Abstract: A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today's wide-area routing protocols that take at least several minutes to recover. A RON is an application-layer overlay on top of the existing Internet routing substrate. The RON nodes monitor the functioning and quality of the Internet paths among themselves, and use this information to decide whether to route packets directly over the Internet or by way of other RON nodes, optimizing application-specific routing metrics.Results from two sets of measurements of a working RON deployed at sites scattered across the Internet demonstrate the benefits of our architecture. For instance, over a 64-hour sampling period in March 2001 across a twelve-node RON, there were 32 significant outages, each lasting over thirty minutes, over the 132 measured paths. RON's routing mechanism was able to detect, recover, and route around all of them, in less than twenty seconds on average, showing that its methods for fault detection and recovery work well at discovering alternate paths in the Internet. Furthermore, RON was able to improve the loss rate, latency, or throughput perceived by data transfers; for example, about 5% of the transfers doubled their TCP throughput and 5% of our transfers saw their loss probability reduced by 0.05. We found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases. These improvements, particularly in the area of fault detection and recovery, demonstrate the benefits of moving some of the control over routing into the hands of end-systems.

1,968 citations

Journal ArticleDOI
TL;DR: BUBBLE is designed and evaluated, a novel social-based forwarding algorithm that utilizes the aforementioned metrics to enhance delivery performance and empirically shows that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social- based forwarding SimBet algorithm.
Abstract: The increasing penetration of smart devices with networking capability form novel networks Such networks, also referred as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc manner The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs To that end, social information is an essential metric for designing forwarding algorithms for such types of networks Previous methods relied on building and updating routing tables to cope with dynamic network conditions On the downside, it has been shown that such approaches end up being cost ineffective due to the partial capture of the transient network behavior A more promising approach would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms In this paper, we exploit two social and structural metrics, namely centrality and community, using real human mobility traces The contributions of this paper are two-fold First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance delivery performance Second, we empirically show that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social-based forwarding SimBet algorithm

1,426 citations

Journal ArticleDOI
TL;DR: New Internet mapping techniques that have enabled us to measure router-level ISP topologies are presented, finding that these maps are substantially more complete than those of earlier Internet mapping efforts.
Abstract: To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to measure router-level ISP topologies. Our techniques reduce the number of required traces compared to a brute-force, all-to-all approach by three orders of magnitude without a significant loss in accuracy. They include the use of BGP routing tables to focus the measurements, the elimination of redundant measurements by exploiting properties of IP routing, better alias resolution, and the use of DNS to divide each map into POPs and backbone. We collect maps from ten diverse ISPs using our techniques, and find that our maps are substantially more complete than those of earlier Internet mapping efforts. We also report on properties of these maps, including the size of POPs, distribution of router outdegree, and the interdomain peering structure. As part of this work, we release our maps to the community.

1,331 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: Surprisingly it turned out that for the proposed AT&T WorldNet backbone, weight settings that performed within a few percent from that of the optimal general routing where the flow for each demand is optimally distributed over all paths between source and destination.
Abstract: Open shortest path first (OSPF) is the most commonly used intra-domain Internet routing protocol. Traffic flow is routed along shortest paths, splitting flow at nodes where several outgoing links are on shortest paths to the destination. The weights of the links, and thereby the shortest path routes, can be changed by the network operator. The weights could be set proportional to their physical distances, but often the main goal is to avoid congestion, i.e., overloading of links, and the standard heuristic recommended by Cisco is to make the weight of a link inversely proportional to its capacity. Our starting point was a proposed AT&T WorldNet backbone with demands projected from previous measurements. The desire was to optimize the weight setting based on the projected demands. We showed that optimizing the weight settings for a given set of demands is NP-hard, so we resorted to a local search heuristic. Surprisingly it turned out that for the proposed AT&T WorldNet backbone, we found weight settings that performed within a few percent from that of the optimal general routing where the flow for each demand is optimally distributed over all paths between source and destination. This contrasts the common belief that OSPF routing leads to congestion and it shows that for the network and demand matrix studied we cannot get a substantially better load balancing by switching to the proposed more flexible multi-protocol label switching (MPLS) technologies. Our techniques were also tested on synthetic internetworks, based on a model of Zegura et al., (1996), for which we did not always get quite as close to the optimal general routing.

1,200 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Wireless network
122.5K papers, 2.1M citations
90% related
Wireless ad hoc network
49K papers, 1.1M citations
90% related
Server
79.5K papers, 1.4M citations
89% related
Wireless sensor network
142K papers, 2.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202219
20215
202016
201928
201831