scispace - formally typeset
Search or ask a question
Topic

Irrigation

About: Irrigation is a research topic. Over the lifetime, 43627 publications have been published within this topic receiving 574688 citations. The topic is also known as: agricultural irrigation & watering.


Papers
More filters
Book
01 Jan 1976
TL;DR: Water quality for agriculture, water quality in agriculture for agriculture as mentioned in this paper, water quality of agriculture, Water quality of water for agriculture in agriculture, مرکز فناوری اطلاعات و اسلاز رسانی
Abstract: Water quality for agriculture , Water quality for agriculture , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

3,518 citations

Journal ArticleDOI
TL;DR: Examination of grain yields and N loss pathways in 2 of the most intensive double-cropping systems in China found that current agricultural N practices with 550–600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment.
Abstract: Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30– 60% N savings, we found that current agricultural N practices with 550–600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service. intensive agriculture synthetic N fertilizer denitrification nitrate leaching N deposition

2,085 citations

Journal ArticleDOI
TL;DR: Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits.
Abstract: At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons—from inadequate network design to excessive irrigation expansion relative to catchment supplies—it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60–100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers’ profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas.

1,540 citations

01 Jan 1997
TL;DR: In this paper, the authors provide guidance in determining crop water requirements and their application in planning, design and operation of irrigation projects, which is intended to provide guidance for farmers in determining their water requirements.
Abstract: This publication is intended to provide guidance in determining crop water requirements and their application in planning, design and operation of irrigation projects.

1,267 citations


Network Information
Related Topics (5)
Agriculture
80.8K papers, 1.3M citations
86% related
Soil water
97.8K papers, 2.9M citations
84% related
Water content
49.8K papers, 1.1M citations
82% related
Soil organic matter
39.8K papers, 1.5M citations
82% related
Surface runoff
45.1K papers, 1.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,473
20226,782
20211,990
20202,302
20192,335