scispace - formally typeset
Search or ask a question
Topic

Ising model

About: Ising model is a research topic. Over the lifetime, 25508 publications have been published within this topic receiving 555000 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, numerically exact free energies are calculated for L×L Ising lattices with bonds of randomly chosen sign, with 6
Abstract: By recursive methods, numerically exact free energies are calculated for L×L Ising lattices with bonds of randomly chosen sign, with 6<~L<~18. Ground states of these systems are identified, and the response to ordering fields is studied. By performing Monte Carlo simulations for precisely the same systems we are able to unambiguously distinguish nonequilibrium phenomena from equilibrium properties. The L dependence of our results suggests that there is no nonzero spin-glass order parameter for L→∞.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use adversarial domain adaptation to find unknown transition points in a deep learning architecture, which can be used to identify the phase boundaries of complex quantum systems such as the Bose glass phase.
Abstract: The identification of phases of matter is a challenging task, especially in quantum mechanics, where the complexity of the ground state appears to grow exponentially with the size of the system. Traditionally, physicists have to identify the relevant order parameters for the classification of the different phases. We here follow a radically different approach: we address this problem with a state-of-the-art deep learning technique, adversarial domain adaptation. We derive the phase diagram of the whole parameter space starting from a fixed and known subspace using unsupervised learning. This method has the advantage that the input of the algorithm can be directly the ground state without any ad hoc feature engineering. Furthermore, the dimension of the parameter space is unrestricted. More specifically, the input data set contains both labeled and unlabeled data instances. The first kind is a system that admits an accurate analytical or numerical solution, and one can recover its phase diagram. The second type is the physical system with an unknown phase diagram. Adversarial domain adaptation uses both types of data to create invariant feature extracting layers in a deep learning architecture. Once these layers are trained, we can attach an unsupervised learner to the network to find phase transitions. We show the success of this technique by applying it on several paradigmatic models: the Ising model with different temperatures, the Bose-Hubbard model, and the Su-Schrieffer-Heeger model with disorder. The method finds unknown transitions successfully and predicts transition points in close agreement with standard methods. This study opens the door to the classification of physical systems where the phase boundaries are complex such as the many-body localization problem or the Bose glass phase.

114 citations

Posted Content
TL;DR: In this article, the existence and the conformal invariance of scaling limits of the magnetization and multi-point spin correlations in the critical Ising model on arbitrary simply connected planar domains were proved.
Abstract: We rigorously prove the existence and the conformal invariance of scaling limits of the magnetization and multi-point spin correlations in the critical Ising model on arbitrary simply connected planar domains. This solves a number of conjectures coming from the physical and the mathematical literature. The proof relies on convergence results for discrete holomorphic spinor observables and probabilistic techniques.

114 citations

Journal ArticleDOI
TL;DR: A calculation of the energy gap shows that it scales as 1/L at the critical point, and a scheme for entanglement renormalization capable of addressing large two-dimensional quantum lattice systems is proposed and tested.
Abstract: We propose and test a scheme for entanglement renormalization capable of addressing large two-dimensional quantum lattice systems. In a translationally invariant system, the cost of simulations grows only as the logarithm of the lattice size; at a quantum critical point, the simulation cost becomes independent of the lattice size and infinite systems can be analyzed. We demonstrate the performance of the scheme by investigating the low energy properties of the 2D quantum Ising model on a square lattice of linear size L={6,9,18,54,∞} with periodic boundary conditions. We compute the ground state and evaluate local observables and two-point correlators. We also produce accurate estimates of the critical magnetic field and critical exponent β. A calculation of the energy gap shows that it scales as 1/L at the critical point.

114 citations


Network Information
Related Topics (5)
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
93% related
Phase transition
82.8K papers, 1.6M citations
91% related
Quantum
60K papers, 1.2M citations
91% related
Ground state
70K papers, 1.5M citations
89% related
Ferromagnetism
55K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023682
20221,314
2021854
2020947
2019870
2018844