scispace - formally typeset
Search or ask a question
Topic

Ising model

About: Ising model is a research topic. Over the lifetime, 25508 publications have been published within this topic receiving 555000 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions is presented.
Abstract: Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.

304 citations

Journal ArticleDOI
TL;DR: For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory as discussed by the authors.
Abstract: For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization-group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.

302 citations

Journal ArticleDOI
TL;DR: A quantum gas trapped in an optical lattice of triangular symmetry can be driven from a paramagnetic to an antiferromagnetic state by a tunable artificial magnetic field as discussed by the authors.
Abstract: A quantum gas trapped in an optical lattice of triangular symmetry can now be driven from a paramagnetic to an antiferromagnetic state by a tunable artificial magnetic field

298 citations

Journal ArticleDOI
TL;DR: In this paper, a degenerate optical parametric oscillator network is proposed to solve the NP-hard problem of finding a ground state of the Ising model, which is based on the bistable output phase of each oscillator and the inherent preference of the network in selecting oscillation modes with the minimum photon decay rate.
Abstract: A degenerate optical parametric oscillator network is proposed to solve the NP-hard problem of finding a ground state of the Ising model. The underlying operating mechanism originates from the bistable output phase of each oscillator and the inherent preference of the network in selecting oscillation modes with the minimum photon decay rate. Computational experiments are performed on all instances reducible to the NP-hard MAX-CUT problems on cubic graphs of order up to 20. The numerical results reasonably suggest the effectiveness of the proposed network.

295 citations

Journal ArticleDOI
TL;DR: In this paper, it has been shown that the Hausdorff dimension of the chordal SLE is equal to Min(2, 1 + κ/8) with probability one.
Abstract: Let γ be the curve generating a Schramm–Loewner Evolution (SLE) process, with parameter κ ≥ 0. We prove that, with probability one, the Haus-dorff dimension of γ is equal to Min(2, 1 + κ/8). Introduction. It has been conjectured by theoretical physicists that various lattice models in statistical physics (such as percolation, Potts model, Ising model, uniform spanning trees), taken at their critical point, have a continuous confor-mally invariant scaling limit when the mesh of the lattice tends to 0. Recently, Oded Schramm [15] introduced a family of random processes which he called Stochastic Loewner Evolutions (or SLE), that are the only possible conformally invariant scaling limits of random cluster interfaces (which are very closely related to all above-mentioned models). An SLE process is defined using the usual Loewner equation, where the driving function is a time-changed Brownian motion. More specifically, in the present paper we will be mainly concerned with SLE in the upper-half plane (sometimes called chordal SLE), defined by the following PDE:

294 citations


Network Information
Related Topics (5)
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
93% related
Phase transition
82.8K papers, 1.6M citations
91% related
Quantum
60K papers, 1.2M citations
91% related
Ground state
70K papers, 1.5M citations
89% related
Ferromagnetism
55K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023682
20221,314
2021854
2020947
2019870
2018844