scispace - formally typeset

Topic

Islanding

About: Islanding is a(n) research topic. Over the lifetime, 5667 publication(s) have been published within this topic receiving 99836 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,134 citations

Book
21 Feb 2011
Abstract: About the Authors. Preface. Acknowledgements. 1 Introduction. 1.1 Wind Power Development. 1.2 Photovoltaic Power Development. 1.3 The Grid Converter The Key Element in Grid Integration of WT and PV Systems. 2 Photovoltaic Inverter Structures. 2.1 Introduction. 2.2 Inverter Structures Derived from H-Bridge Topology. 2.3 Inverter Structures Derived from NPC Topology. 2.4 Typical PV Inverter Structures. 2.5 Three-Phase PV Inverters. 2.6 Control Structures. 2.7 Conclusions and Future Trends. 3 Grid Requirements for PV. 3.1 Introduction. 3.2 International Regulations. 3.3 Response to Abnormal Grid Conditions. 3.4 Power Quality. 3.5 Anti-islanding Requirements. 3.6 Summary. 4 Grid Synchronization in Single-Phase Power Converters. 4.1 Introduction. 4.2 Grid Synchronization Techniques for Single-Phase Systems. 4.3 Phase Detection Based on In-Quadrature Signals. 4.4 Some PLLs Based on In-Quadrature Signal Generation. 4.5 Some PLLs Based on Adaptive Filtering. 4.6 The SOGI Frequency-Locked Loop. 4.7 Summary. 5 Islanding Detection. 5.1 Introduction. 5.2 Nondetection Zone. 5.3 Overview of Islanding Detection Methods. 5.4 Passive Islanding Detection Methods. 5.5 Active Islanding Detection Methods. 5.6 Summary. 6 Grid Converter Structures forWind Turbine Systems. 6.1 Introduction. 6.2 WTS Power Configurations. 6.3 Grid Power Converter Topologies. 6.4 WTS Control. 6.5 Summary. 7 Grid Requirements for WT Systems. 7.1 Introduction. 7.2 Grid Code Evolution. 7.3 Frequency and Voltage Deviation under Normal Operation. 7.4 Active Power Control in Normal Operation. 7.5 Reactive Power Control in Normal Operation. 7.6 Behaviour under Grid Disturbances. 7.7 Discussion of Harmonization of Grid Codes. 7.8 Future Trends. 7.9 Summary. 8 Grid Synchronization in Three-Phase Power Converters. 8.1 Introduction. 8.2 The Three-Phase Voltage Vector under Grid Faults. 8.3 The Synchronous Reference Frame PLL under Unbalanced and Distorted Grid Conditions. 8.4 The Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL). 8.5 The Double Second-Order Generalized Integrator FLL (DSOGI-FLL). 8.6 Summary. 9 Grid Converter Control for WTS. 9.1 Introduction. 9.2 Model of the Converter. 9.3 AC Voltage and DC Voltage Control. 9.4 Voltage Oriented Control and Direct Power Control. 9.5 Stand-alone, Micro-grid, Droop Control and Grid Supporting. 9.6 Summary. 10 Control of Grid Converters under Grid Faults. 10.1 Introduction. 10.2 Overview of Control Techniques for Grid-Connected Converters under Unbalanced Grid Voltage Conditions. 10.3 Control Structures for Unbalanced Current Injection. 10.4 Power Control under Unbalanced Grid Conditions. 10.5 Flexible Power Control with Current Limitation. 10.6 Summary. 11 Grid Filter Design. 11.1 Introduction. 11.2 Filter Topologies. 11.3 Design Considerations. 11.4 Practical Examples of LCL Filters and Grid Interactions. 11.5 Resonance Problem and Damping Solutions. 11.6 Nonlinear Behaviour of the Filter. 11.7 Summary. 12 Grid Current Control. 12.1 Introduction. 12.2 Current Harmonic Requirements. 12.3 Linear Current Control with Separated Modulation. 12.4 Modulation Techniques. 12.5 Operating Limits of the Current-Controlled Converter. 12.6 Practical Example. 12.7 Summary. Appendix A Space Vector Transformations of Three-Phase Systems. A.1 Introduction. A.2 Symmetrical Components in the Frequency Domain. A.3 Symmetrical Components in the Time Domain. A.4 Components 0 on the Stationary Reference Frame. A.5 Components dq0 on the Synchronous Reference Frame. Appendix B Instantaneous Power Theories. B.1 Introduction. B.2 Origin of Power Definitions at the Time Domain for Single-Phase Systems. B.3 Origin of Active Currents in Multiphase Systems. B.4 Instantaneous Calculation of Power Currents in Multiphase Systems. B.5 The p-q Theory. B.6 Generalization of the p-q Theory to Arbitrary Multiphase Systems. B.7 The Modified p-q Theory. B.8 Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. B.9 Summary. Appendix C Resonant Controller. C.1 Introduction. C.2 Internal Model Principle. C.3 Equivalence of the PI Controller in the dq Frame and the P+Resonant Controller in the Frame. Index.

2,195 citations

Proceedings ArticleDOI
16 Jul 2000
Abstract: Distributed generation (DG) has much potential to improve distribution system performance and it should be encouraged. However, distribution system designs and operating practices are normally based on radial power flows and this creates a special challenge to the successful introduction of distributed generation. This paper has described a few of the issues that must be considered to insure that DG will not degrade distribution system power quality, safety or reliability. This paper focused on radial systems, although some of the issues discussed are common to low voltage distribution networks.

1,241 citations

Journal ArticleDOI
Abstract: This paper investigates (i) preplanned switching events and (ii) fault events that lead to islanding of a distribution subsystem and formation of a micro-grid. The micro-grid includes two distributed generation (DG) units. One unit is a conventional rotating synchronous machine and the other is interfaced through a power electronic converter. The interface converter of the latter unit is equipped with independent real and reactive power control to minimize islanding transients and maintain both angle stability and voltage quality within the micro-grid. The studies are performed based on a digital computer simulation approach using the PSCAD/EMTDC software package. The studies show that an appropriate control strategy for the power electronically interfaced DG unit can ensure stability of the micro-grid and maintain voltage quality at designated buses, even during islanding transients. This paper concludes that presence of an electronically-interfaced DG unit makes the concept of micro-grid a technically viable option for further investigations.

1,066 citations

Journal ArticleDOI
16 May 2011
TL;DR: This paper focuses on DER-based distribution, the basics of microgrids, possibility of smart distribution systems using coupled microgrid and the current state of autonomous microgrid technology.
Abstract: The distribution system provides major opportunities for smart grid concepts. One way to approach distribution system problems is to rethinking our distribution system to include the integration of high levels of distributed energy resources, using microgrid concepts. Basic objectives are improved reliability, promote high penetration of renewable sources, dynamic islanding, and improved generation efficiencies through the use of waste heat. Managing significant levels of distributed energy resources (DERs) with a wide and dynamic set of resources and control points can become overwhelming. The best way to manage such a system is to break the distribution system down into small clusters or microgrids, with distributed optimizing controls coordinating multimicrogrids. The Consortium for Electric Reliability Technology Solutions (CERTSs) concept views clustered generation and associated loads as a grid resource or a “microgrid.” The clustered sources and loads can operate in parallel to the grid or as an island. This grid resource can disconnect from the utility during events (i.e., faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. This paper focuses on DER-based distribution, the basics of microgrids, possibility of smart distribution systems using coupled microgrid and the current state of autonomous microgrid technology.

873 citations

Network Information
Related Topics (5)
Electric power system

133K papers, 1.7M citations

93% related
Wind power

99K papers, 1.5M citations

88% related
Photovoltaic system

103.9K papers, 1.6M citations

86% related
Voltage

296.3K papers, 1.7M citations

85% related
Fault (power engineering)

119.7K papers, 981.6K citations

84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021333
2020401
2019430
2018462
2017439