scispace - formally typeset
Search or ask a question
Topic

Isolation transformer

About: Isolation transformer is a research topic. Over the lifetime, 8145 publications have been published within this topic receiving 72396 citations.


Papers
More filters
Patent
31 May 1977
TL;DR: In this article, a DC signaling circuit is designed to simulate and transfer the simulated DC signals across the isolation transformer to a line side of the communication system leading to the central communication exchange center.
Abstract: The present invention relates to a DC signaling circuit operatively associated with a communication system having an isolation transformer interconnected between a central communication exchange center and a station site such as a power substation or generating plant where high voltage potential exists. The isolation transformer provides protection from fault conditions that could apply hazardous voltage to a cable pair entering the station. Because of the presence of the isolation transformer, there is no direct path for DC signal functions to pass from the station to the central communication exchange center. Thus, the DC signaling circuit of the present invention is designed to simulate and transfer the simulated DC signals across the isolation transformer to a line side of the communication system leading to the central communication exchange center. DC signals and logic information generated by a signal source such as a telephone on the station side of the isolation transformer can thusly be effectively transferred across the isolation transformer exactly as generated and in a clear and undistorted manner due, at least in part, to provisions in the DC circuit that shunt the windings of the isolation transformer during time intervals when DC signals are generated and communicated to the line side of said communication system.

54 citations

Journal ArticleDOI
TL;DR: Experiments confirm that this full-bridge architecture allows to achieve a high efficiency, a lower ripple factor, and a good EMC behavior, and the aforementioned issues were tackled relying on an open-loop topology.
Abstract: This paper describes a simple dc-dc step-up converter topology for switch-mode dc power supplies. The proposed configuration is well suited for high-power applications with battery supply. In the automotive framework, the push-pull architecture is the most widespread. However, as power increases, the use of a full-bridge architecture is mandatory. This paper presents a full-bridge architecture where the traditional single-phase transformer is replaced by a three-phase transformer. A prototype was realized and tested for the power supply of automotive devices. In this environment, one of the most important requirements is the ability to provide a burst of power during short-duration events, together with high-efficiency and high-quality output voltage. The latter constraints can be achieved by only using closed-loop switch-mode dc-dc converters at high switching frequency, thus reducing converter efficiency and creating electromagnetic-compatibility (EMC) problems. In this paper, the aforementioned issues were tackled relying on an open-loop topology. Open-loop converters are feasible if the output resistance of the converter is as low as possible, and a possible solution is the minimization of power losses. The solution is the use of a three-phase transformer with a delta-wye connection within a full-bridge converter topology. The configuration will be referred to as 3boost power supply. The three-phase transformer replaces the common single-phase transformer, and it is driven by a three-phase full-bridge inverter operating in six-step modulation. At secondary, a three-phase full wave diode rectifier is used to obtain the output dc voltage level. Therefore, a unitary transformer utilization factor is achieved. A simple theoretical comparison between the three types of converters-push-pull, conventional full bridge, and 3boost is shown. A low-power version of the converter was realized. Experiments confirm that this topology allows to achieve a high efficiency, a lower ripple factor, and a good EMC behavior.

54 citations

Journal ArticleDOI
Par Wedin1
TL;DR: In this paper, a transformer consists of a magnetic iron core with primary and secondary copper windings, and the alternating current flowing in the primary winding induces a magnetic flux in the core, which in turn creates a current in the secondary windings.
Abstract: Power transformers are utilized to convert high voltages normally used in electrical power transmission to lower voltages more suitable for consumers. A transformer consists essentially of a magnetic iron core with primary and secondary copper windings. The alternating current flowing in the primary winding induces a magnetic flux in the core, which in turn creates a current in the secondary windings. If there is a difference in the number of turns in the primary and secondary windings, the secondary voltage will be scaled up or down proportionally to the ratio of the turns. In this way, a high voltage can be transformed to a low voltage. However, the desire to convert increasingly greater electrical loads using smaller power transformers results in both higher electrical and thermal stresses. The materials utilized to insulate the different electrically conductive components from each other must be designed to withstand those stresses. The insulating media often consist of pressboard and an insulating liquid. The liquid performs a double duty as it not only insulates the conductive parts but also functions as a liquid coolant. Here we are primarily interested in the oil as an insulating medium.

54 citations

Journal ArticleDOI
TL;DR: The detailed design considerations and an optimal design method are presented, and the test results show performance better than expected, with desirable no-load loss and power density of 2.9623 × 106 W/m3.
Abstract: A 1.5 kV, 35 kW, 1 kHz silicon steel core medium-frequency transformer is designed and prototyped for a 10 kV, 0.5 MW electronic power transformer. This transformer uses 0.18 mm silicon steel as core material due to the advantages of easy processing, high saturation flux density, low noise, and low cost. The detailed design considerations and an optimal design method are presented in this paper. Different from the previous work on medium-frequency transformer design, the proposed approach takes ripples into account. Core loss model under square wave excitation with ripple and winding loss model considering sideband harmonics are established. Besides, two-dimensional finite-element simulations are adopted to obtain ac/dc resistance factors. Finally, the proposed approach is verified by experiments on prototype. The test results show performance better than expected, with desirable no-load loss and power density of 2.9623 × 106 W/m3.

54 citations

Patent
26 Sep 1979
TL;DR: In this article, a driving circuit for ultrasonic tools which uses a piezoelectric transducer to convert ultrasonic electric signals into ultrasonic mechanical vibrations is described, where a voltage-controlled oscillator produces an output signal at a frequency that is proportional to an input voltage, a power amplifier stage having its input coupled to the output of the voltage controlled oscillator, the power output transformer further acting as both an insulating transformer and a boosting transformer for the driving circuit and a feedback transformer coupled in series with the secondary side of the output transformer and the piez
Abstract: A driving circuit for ultrasonic tools which uses a piezoelectric transducer to convert ultrasonic electric signals into ultrasonic mechanical vibrations including a voltage-controlled oscillator which produces an output signal at a frequency that is proportional to an input voltage, a power amplifier stage having its input coupled to the output of the voltage-controlled oscillator, the power amplifier stage including an output transformer which couples the output of the power amplifier stage to the piezoelectric transducer, the power output transformer further acting as both an insulating transformer and a boosting transformer for the driving circuit and a feedback transformer coupled in series with the secondary side of the output transformer and the piezoelectric transducer, the feedback transformer having a secondary side through which a current flows which is proportional to the current flowing through the piezoelectric transducer, a phase comparitor which detects the phase difference between two signals applied to two inputs of the phase comparitor, the two inputs being respectively coupled to the output signal of the voltage controlling oscillator and the secondary side of the feedback transformer and a low pass filter which blocks high frequency components to pass therethrough connected between an output of the phase comparitor and the input of the voltage controlled oscillator.

54 citations


Network Information
Related Topics (5)
AC power
80.9K papers, 880.8K citations
86% related
Voltage
296.3K papers, 1.7M citations
86% related
Electric power system
133K papers, 1.7M citations
84% related
Stator
112.5K papers, 814.8K citations
83% related
Capacitor
166.6K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202251
202144
2020151
2019211
2018266