scispace - formally typeset
Search or ask a question
Topic

Isometric exercise

About: Isometric exercise is a research topic. Over the lifetime, 16279 publications have been published within this topic receiving 622177 citations. The topic is also known as: isometrics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a more accurate and rapid technique for muscle heat measurement was proposed, and some astonishingly simple and accurate relations have been found, which determine the effect of load on speed of shortening, allow the form of the isometric contraction to be predicted, and are the basis of the so-called "visco-elasticity" of skeletal muscle.
Abstract: The hope was recently expressed (Hill 1937, p. 116) that with the development of a more accurate and rapid technique for muscle heat measurement, a much more consistent picture might emerge of the energy relations of muscles shortening (or lengthening) and doing positive (or negative) work. This hope has been realized, and some astonishingly simple and accurate relations have been found, relations, moreover, which (among other things) determine the effect of load on speed of shortening, allow the form of the isometric contraction to be predicted, and are the basis of the so-called “visco-elasticity” of skeletal muscle. This paper is divided into three parts. In Part I further developments of the technique are described: everything has depended on the technique, so no apology is needed for a rather full description of it and of the precautions necessary. In Part II the results themselves are described and discussed. In Part III the “visco-elastic” properties of active muscle are shown to be a consequence of the properties described in Part II.

4,672 citations

Journal Article
TL;DR: In this article, the optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single and multiple-joint exercises.
Abstract: In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises) For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM) For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC) When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number The recommendation for training frequency is 2-3 d·wk -1 for novice training, 3-4 d·wk -1 for intermediate training, and 4-5 d·wk -1 for advanced training Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity Higher volume, multiple-set programs are recommended for maximizing hypertrophy Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets) It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s) In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status

3,421 citations

Journal ArticleDOI
TL;DR: Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it.
Abstract: Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal cha...

3,200 citations

Journal ArticleDOI
TL;DR: The variation of isometric tetanus tension with sarcomere length in single fibres from frog striated muscle has been re‐investigated with special precautions to ensure uniformity of sarcomeres length within the part of the fibre being studied.
Abstract: 1. The variation of isometric tetanus tension with sarcomere length in single fibres from frog striated muscle has been re-investigated with special precautions to ensure uniformity of sarcomere length within the part of the fibre being studied. 2. In most respects the results of Ramsey & Street (1940) were confirmed, but (a) the peak of the curve was found to consist of a plateau between sarcomere lengths of 2·05 and 2·2 μ, (b) the decline of tension above this plateau is steeper than found by Ramsey & Street, and (c) the decline of tension below the plateau becomes suddenly steeper at a sarcomere length of about 1·67 μ. 3. Many features of this length—tension relation are simply explained on the sliding-filament theory. 4. It is concluded that, in the plateau and at greater lengths, the tension on each thin filament is made up of equal contributions from each bridge which it overlaps on adjacent thick filaments. 5. Internal resistance to shortening is negligible in this range but becomes progressively more important with shortening below the plateau.

2,969 citations

Journal ArticleDOI
TL;DR: These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training and current issues of practical importance in the clinical use of these standards are considered.
Abstract: The purpose of this report is to provide revised standards and guidelines for the exercise testing and training of individuals who are free from clinical manifestations of cardiovascular disease and those with known cardiovascular disease. These guidelines are intended for physicians, nurses, exercise physiologists, specialists, technologists, and other healthcare professionals involved in exercise testing and training of these populations. This report is in accord with the “Statement on Exercise” published by the American Heart Association (AHA).1 These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training.2 An update of background, scientific rationale, and selected references is provided, and current issues of practical importance in the clinical use of these standards are considered. These guidelines are in accord with the American College of Cardiology (ACC)/AHA Guidelines for Exercise Testing.3 ### The Cardiovascular Response to Exercise Exercise, a common physiological stress, can elicit cardiovascular abnormalities that are not present at rest, and it can be used to determine the adequacy of cardiac function. Because exercise is only one of many stresses to which humans can be exposed, it is more appropriate to call an exercise test exactly that and not a “stress test.” This is particularly relevant considering the increased use of nonexercise stress tests. ### Types of Exercise Three types of muscular contraction or exercise can be applied as a stress to the cardiovascular system: isometric (static), isotonic (dynamic or locomotory), and resistance (a combination of isometric and isotonic).4,5 Isotonic exercise, which is defined as a muscular contraction resulting in movement, primarily provides a volume load to the left ventricle, and the response is proportional to the size of the working muscle mass and the intensity of exercise. Isometric exercise is defined as a muscular contraction without movement (eg, handgrip) and imposes greater pressure than volume …

2,964 citations


Network Information
Related Topics (5)
Muscle contraction
15.7K papers, 736.1K citations
84% related
Physical exercise
16.6K papers, 982K citations
83% related
Skeletal muscle
58.8K papers, 2.4M citations
82% related
Heart rate
32.3K papers, 1M citations
79% related
Body movement
14.6K papers, 804.3K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023779
20221,729
2021599
2020594
2019558