scispace - formally typeset
Topic

Jet (fluid)

About: Jet (fluid) is a(n) research topic. Over the lifetime, 67645 publication(s) have been published within this topic receiving 887561 citation(s). The topic is also known as: jet flow & fluid jet.

...read more

Papers
  More

Open accessJournal ArticleDOI: 10.1140/EPJC/S10052-012-1896-2
Matteo Cacciari1, Matteo Cacciari2, Gavin P. Salam3, Gavin P. Salam4  +2 moreInstitutions (4)
Abstract: FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e + e − collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

...read more

Topics: Jet (fluid) (52%)

3,713 Citations


Open accessBook
01 Jan 1969-
Abstract: Collisional Processes.- Analytical Formulae for Cross Sections and Rate Constants of Elementary Processes in Gases.- Relaxation of Velocity Distribution of Electrons Cooled (Heated) By Rotational Excitation (De-Excitation) Of N2.- Effects of the Initial Molecular States in a High-Energy Scattering of Molecular Beams.- Differential Cross Sections for Ion-Pair Formation with Selection of the Exit Channel.- Low-temperature Viscosity Cross Sections Measured in a Supersonic Argon Beam II.- Excited Oxygen Iodine Kinetic Studies.- Determination of Antisymmetric Mode Energy of CO2 Injected into a Supersonic Nitrogen Flow.- Molecular Beams.- Where are we going with molecular beams?.- Cesium Vapor Jettarget Produced With a Supersonic Nozzle.- Basic Features of the Generation and Diagnostics of Atomic Hydrogen Beams in the Ground and Metastable 22S1/2-States to Determine the Fundamental Physical Constants.- Optical Pumping Of Metastable Neon Atoms in A Weak Magnetic Field.- CO2-Laser Excitation of a Molecular Beam Monitored By Spontaneous Raman Effect.- Time-of-Flight and Electron Beam Fluorescence Diagnostics: Optimal Experimental Designs.- Molecular Beam Time-of-Flight Measurements in A Nearly Freejet Expansion of High Temperature Gas Produced By a Shock Tube.- Electron Beam Diagnostics.- Electron-Beam Diagnostics of High Temperature Rarefied Gas Flows.- Excitation Models Used in the Electron Beam Fluorescence Technique.- Electron - Beam Diagnostics in Nitrogen Multiquantum Rotational Transitions.- Free Jets, Nonequilibrium Expansions.- Free Jet as an Object of Nonequilibrium Processes Investigation.- State Dependent Angular Distributions of Na2 Molecules in a Na/Na2 Free Jet Expansion.- Molecular Beam Time-of-Flight Measurements and Moment Method Calculations of Translational Relaxation in Highly Heated Free Jets of Monatomic Gas Mixtures.- Rovibrational State Population Distributions of CO (v ? 4, J ? 10) In Highly Heated Supersonic Free Jets of CO-N2 Mixtures.- Free Jet Expansion with A Strong Condensation Effect.- Measured Densities in UF6 Free Jets.- Rotational Relaxation of NO in Seeded, Pulsed Nozzle Beams.- The Free-Jet Expansion from a Capillary Source.- Rotational Relaxation in High Temperature Jets of Nitrogen.- Translational Nonequilibrium in a Free Jet Expansion of a Binary Gas Mixture.- Laser Induced Fluorescence Study of Free Jet Expansions.- Jet-Surface Interactions.- Experimental Study of Plume Impingement and Heating Effect on Ariane's Payload.- The Interaction of a Jet Exhausting from a Body with a Supersonic Free Flow of a Rarefied Gas.- Modelling Control Thruster Plume Flow and Impingement.- Impingement of a Supersonic, Underexpanded Rarefied Jet upon a Flat Plate.- Some Peculiarities of Power and Heat Interaction of a Low Density Highly Underexpanded Jet with a Flat Plate.- Condensation in Flows.- Nonequilibrium Condensation in Free Jets.- Condensation and Vapour-Liquid Interaction in a Reflected Shock Region.- Homogeneous and Heterogeneous Condensation of Nitrogen in Transonic Flow.- Investigation of Nonequilibrium Homogeneous Gas Condensation.- The Peculiarities of Condensation Process in Conical Nozzle and in Free Jet Behind it.- Investigation of Nonequilibrium Argon Condensation In Supersonic Jet By Mass-Spectrometry, Electron Diffraction and VUV Emission Spectroscopy.- Clusters and Nucleation Kinetics.- The Microscopic Theory of Clustering and Nucleation.- Kinetics of Cluster Formation and Growth in the Process of Isothermal Condensation.- Relaxation Processes in a Molecular Dynamic Model of Cluster from the Lennard-Jones Particles.- Quantum-Chemical Study Of Processes With Cluster Isomerism.- The Homogeneous Nucleation at the Continuously Changing Temperature and Vapour Concentration.- Molecular Clusters as Heterogeneous Condensation Nuclei.- Experiments with Clusters.- The Photochemistry of Small van der Waals Molecules as Studied by Laser Spectroscopy in Supersonic Free Jets.- Diagnostics of Clusters in Molecular Beams.- Experimental Studies of Water-Aerosol Explosive Vaporization.- Laser Probing of Cluster Formation and Dissociation in Molecular Beams.- Free Molecule Drag on Helium Clusters.- Vibrational Relaxation Kinetics in a Two-Phase Gas-Cluster System.- Gas-Particle Flows.- Long-Range Attraction in the Collisions of Free-Molecular and Transition Regime Aerosol Particles.- Nonequilibrium Statistical Theory of Dispersed Systems.- The Mechanism of Strong Electric Field Effect on the Dispersed Media in the Rarefied Gas.- Generation of High-Speed Aerosol Beams By Laval Nozzles.- Kinetic Model of a Gas Suspension.- Gas Mixtures.- Kinetic Phenomena in the Rarefied Gas Mixtures Flowing Through Channels.- On the Discrete Boltzmann Equation for Binary Gas Mixtures.- Peculiarities and Applicability Conditions of Macroscopic Description of Disparate Molecular Masses Mixture Motion.- Numerical Solution of the Boltzmann Kinetic Equation for the Binary Gas Mixture.- Species Isotope Separation.- Gas or Isotope Separation by Injection into Light Gas Flow.- Molecular Diffusion Through a Fine-Pored Filter Versus Resonante IR-Radiation Intensity.- On Limiting Situations of Gas Dynamic Separation.- A Study of Reverse Leaks.- Investigation of Nonequilibrium Effects in Separation Nozzles by Monte-Carlo Simulation.- Separation of Binary Gas Mixtures at their Effusion through a Capillary and a Nuclear Filler into Vacuum.- Ionized Gases.- Effects of Nonideality in Quantum Kinetic Theory.- Molecular Mass and Heat Transfer of Chemical Equilibrium Multicomponent Partially Ionized Gases in Electromagnetic Field.- Spectroscopic Study of a Plasma Flow along the Stagnation Streamline of a Blunt Body.- On Model Kinetic Operators and Corresponding Langevin Sources for a Non-Equilibrium Plasma.- Related Fields.- Rarefied Gas Dynamics as Related to Controlled Thermonuclear Fusion.- Vacuum Ejectors with Appreciably Uneven Flows in Channels at Low Reynolds Numbers.- Simulation of the Process of the Cosmic Body Formation.

...read more

Topics: Jet (fluid) (55%), Monatomic gas (55%), Molecular beam (54%) ...read more

2,732 Citations


Journal ArticleDOI: 10.1017/S0022112071001745
Abstract: Past evidence suggests that a large-scale orderly pattern may exist in the noiseproducing region of a jet. Using several methods to visualize the flow of round subsonic jets, we watched the evolution of orderly flow with advancing Reynolds number. As the Reynolds number increases from order 102 to 103, the instability of the jet evolves from a sinusoid to a helix, and finally to a train of axisymmetric waves. At a Reynolds number around 104, the boundary layer of the jet is thin, and two kinds of axisymmetric structure can be discerned: surface ripples on the jet column, thoroughly studied by previous workers, and a more tenuous train of large-scale vortex puffs. The surface ripples scale on the boundary-layer thickness and shorten as the Reynolds number increases toward 105. The structure of the puffs, by contrast, remains much the same: they form at an average Strouhal number of about 0·3 based on frequency, exit speed, and diameter.To isolate the large-scale pattern at Reynolds numbers around 105, we destroyed the surface ripples by tripping the boundary layer inside the nozzle. We imposed a periodic surging of controllable frequency and amplitude at the jet exit, and studied the response downstream by hot-wire anemometry and schlieren photography. The forcing generates a fundamental wave, whose phase velocity accords with the linear theory of temporally growing instabilities. The fundamental grows in amplitude downstream until non-linearity generates a harmonic. The harmonic retards the growth of the fundamental, and the two attain saturation intensities roughly independent of forcing amplitude. The saturation amplitude depends on the Strouhal number of the imposed surging and reaches a maximum at a Strouhal number of 0·30. A root-mean-square sinusoidal surging only 2% of the mean exit speed brings the preferred mode to saturation four diameters downstream from the nozzle, at which point the entrained volume flow has increased 32% over the unforced case. When forced at a Strouhal number of 0·60, the jet seems to act as a compound amplifier, forming a violent 0·30 subharmonic and suffering a large increase of spreading angle. We conclude with the conjecture that the preferred mode having a Strouhal number of 0·30 is in some sense the most dispersive wave on a jet column, the wave least capable of generating a harmonic, and therefore the wave most capable of reaching a large amplitude before saturating.

...read more

Topics: Strouhal number (67%), Jet (fluid) (59%), Reynolds number (56%) ...read more

2,012 Citations


Journal ArticleDOI: 10.1021/J150664A002
Masamichi Yamashita, John B. Fenn1Institutions (1)
Abstract: Solutions passed through a small capillary at 2-10 kV relative to ground are electrosprayed into a bath gas to form a gaseous dispersion of ions that is expanded into vacuum in a small supersonic free jet A portion of the jet is passed through a skimmer to form a molecular beam that contains a variety of ionic species Mass spectrometric analysis reveals that these species include solute cations in aggregation with solvent molecules and/or nonionized solute species The nature of the product ions depends upon the composition and feed rate of the original solution, the temperature and composition of the bath gas, and the voltage applied to the capillary The exploratory experiments reported here suggest that this novel ion source may be useful for producing in vacuo a wide variety of cluster ions for examination by various spectroscopic techniques Also inviting is the prospect of extending the applicability of mass spectrometric analysis to large organic molecules that are too complex, too fragile, or too nonvolatile for ionization by more conventional methods Another intriguing possibility is to use the technique on probing the microscopic structure and properties of solutions

...read more

Topics: Ion source (56%), Mass spectrometry (52%), Ion (51%) ...read more

1,811 Citations


Journal ArticleDOI: 10.1098/RSPA.1954.0049
Michael James Lighthill1Institutions (1)
Abstract: The theory of sound generated aerodynamically is extended by taking into account the statistical properties of turbulent airflows, from which the sound radiated (without the help of solid boundaries) is called aerodynamic noise. The theory is developed with special reference to the noise of jets, for which a detailed comparison with experiment is made (§7 for subsonic jets, §8 for supersonic ones). The quadrupole distribution of part I (Lighthill 1952) is shown to behave (see §3) as if it were concentrated into independent point quadrupoles, one in each ‘average eddy volume’. The sound field of each of these is distorted, in favour of downstream emission, by the general downstream motion of the eddy, in accordance with the quadrupole convection theory of part I. This explains, for jet noise, the marked preference for downstream emission, and its increase with jet velocity. For jet velocities considerably greater than the atmospheric speed of sound, the ‘Mach number of convection’ M c may exceed I in parts of the jet, and then the directional maximum for emission from these parts of the jet is at an angle of sec -1 ( M c ) to the axis (§8). Although turbulence without any mean flow has an acoustic power output, which was calculated to a rough approximation from the expressions of part I by Proudman (1952) (see also § 4 below), nevertheless, turbulence of given intensity can generate more sound in the presence of a large mean shear (§ 5). This sound has a directional maximum at 45° (or slightly less, due to the quadrupole convection effect) to the shear layer. These results follow from the fact that the most important term in the rate of change of momentum flux is the product of the pressure and the rate of strain (see figure 2). The higher frequency sound from the heavily sheared mixing region close to the orifice of a jet is found to be of this character. But the lower frequency sound from the fully turbulent core of the jet, farther downstream, can be estimated satisfactorily (§7) from Proudman’s results, which are here reinterpreted (§5) in terms of sound generated from combined fluctuations of pressure and rate of shear in the turbulence. The acoustic efficiency of the jet is of the order of magnitude 10 -4 M 5 , where M is the orifice Mach number. However, the good agreement, as regards total acoustic power output, with the dimensional considerations of part I, is partly fortuitous. The quadrupole convection effect should produce an increase in the dependence of acoustic power on the jet velocity above the predicted U 8 law. The experiments show that (largely cancelling this) some other dependence on velocity is present, tending to reduce the intensity, at the stations where the convection effect would be absent, below the U 8 law. At these stations (at 90° to the jet) proportionality to about U 6.5 is more common. A suggested explanation of this, compatible with the existing evidence, is that at higher Mach numbers there may be less turbulence (especially for larger values of nd / U , where n is frequency and d diameter), because in the mixing region, where the turbulence builds up, it is losing energy by sound radiation. This would explain also the slow rate of spread of supersonic mixing regions, and, indeed, is not incompatible with existing rough explanations of that phenomenon. A consideration (§6) of whether the terms other than momentum flux in the quadrupole strength density might become important in heated jets indicates that they should hardly ever be dominant. Accordingly, the physical explanation (part I) of aerodynamic sound generation still stands. It is re-emphasized, however, that whenever there is a fluctuating force between the fluid and a solid boundary, a dipole radiation will result which may be more efficient than the quadrupole radiation, at least at low Mach numbers.

...read more

Topics: Sound power (65%), Jet noise (60%), Jet (fluid) (60%) ...read more

1,382 Citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202272
20212,205
20202,204
20192,537
20182,447
20172,467

Top Attributes

Show by:

Topic's top 5 most impactful authors

Jet Contributors

207 papers, 2K citations

Jet-Efda Contributors

178 papers, 3.1K citations

Ephraim Gutmark

108 papers, 2.6K citations

C. Giroud

86 papers, 1.3K citations

Graham J. Nathan

64 papers, 1.6K citations

Network Information
Related Topics (5)
Direct numerical simulation

10.9K papers, 298.7K citations

86% related
Reynolds number

68.4K papers, 1.6M citations

86% related
Turbulence

112.1K papers, 2.7M citations

85% related
Turbulence modeling

10.9K papers, 388.7K citations

84% related
Computational fluid dynamics

30.8K papers, 607.9K citations

84% related