Topic
Joint quantum entropy
About: Joint quantum entropy is a research topic. Over the lifetime, 5093 publications have been published within this topic receiving 172882 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.
6,591 citations
TL;DR: In this article, a systematic study of entanglement entropy in relativistic quantum field theory is carried out, where the von Neumann entropy is defined as the reduced density matrix ρA of a subsystem A of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, and the results are verified for a free massive field theory.
Abstract: We carry out a systematic study of entanglement entropy in relativistic quantum field theory. This is defined as the von Neumann entropy SA = −Tr ρAlogρA corresponding to the reduced density matrix ρA of a subsystem A. For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, we re-derive the result of Holzhey et al when A is a finite interval of length in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length ξ is large but finite, we show that , where is the number of boundary points of A. These results are verified for a free massive field theory, which is also used to confirm a scaling ansatz for the case of finite size off-critical systems, and for integrable lattice models, such as the Ising and XXZ models, which are solvable by corner transfer matrix methods. Finally the free field results are extended to higher dimensions, and used to motivate a scaling form for the singular part of the entanglement entropy near a quantum phase transition.
3,029 citations
TL;DR: Any pure or mixed entangled state of two systems can be produced by two classically communicating separated observers, drawing on a supply of singlets as their sole source of entanglement.
Abstract: If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partly entangled pure states, one member of each pair being given to each observer, they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of particles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The concentration process asymptotically conserves entropy of entanglement---the von Neumann entropy of the partial density matrix seen by either observer---with the yield of singlets approaching, for large n, the base-2 entropy of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two systems can be produced by two classically communicating separated observers, drawing on a supply of singlets as their sole source of entanglement. \textcopyright{} 1996 The American Physical Society.
2,633 citations
TL;DR: In this paper, a holographic interpretation of entanglement entropy in conformal field theories is proposed from AdS/CFT correspondence, and the relation between the entropy and central charges in 4D conformal fields is examined.
Abstract: This is an extended version of our short report [1], where a holographic interpretation of entanglement entropy in conformal field theories is proposed from AdS/CFT correspondence. In addition to a concise review of relevant recent progresses of entanglement entropy and details omitted in the earlier letter, this paper includes the following several new results: We give a more direct derivation of our claim which relates the entanglement entropy with the minimal area surfaces in the AdS3/CFT2 case as well as some further discussions on higher dimensional cases. Also the relation between the entanglement entropy and central charges in 4D conformal field theories is examined. We check that the logarithmic part of the 4D entanglement entropy computed in the CFT side agrees with the AdS5 result at least under a specific condition. Finally we estimate the entanglement entropy of massive theories in generic dimensions by making use of our proposal.
2,310 citations