scispace - formally typeset
Search or ask a question
Topic

Jupiter mass

About: Jupiter mass is a research topic. Over the lifetime, 1044 publications have been published within this topic receiving 63535 citations. The topic is also known as: M_J & MJ.


Papers
More filters
Journal ArticleDOI
23 Nov 1995-Nature
TL;DR: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity as discussed by the authors, which would be well inside the orbit of Mercury in our Solar System.
Abstract: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

3,957 citations

Journal ArticleDOI
28 Nov 2008-Science
TL;DR: High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units.
Abstract: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

1,966 citations

Journal ArticleDOI
TL;DR: In this article, the authors present evolutionary models for cool brown dwarfs and extra-solar giant planets and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets.
Abstract: We present evolutionary models for cool brown dwarfs and extra-solar giant planets. The models reproduce the main trends of observed methane dwarfs in near-IR color-magnitude diagrams. We also present evolutionary models for irradiated planets, coupling for the first time irradiated atmosphere profiles and inner structures. We focus on HD 209458-like systems and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets. Irradiation effects, however, cannot alone explain the large observed radius of HD 209458b. Adopting assumptions which optimise irradiation effects and taking into account the extension of the outer atmospheric layers, we still find $\\sim$ 20% discrepancy between observed and theoretical radii. An extra source of energy seems to be required to explain the observed value of the first transit planet.

1,812 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations

Journal ArticleDOI
TL;DR: For hydrogen-helium-rich planets, the authors in this article couple planetary evolution to stellar irradiation over a wide range of orbital separations (0.02-10 AU) through a nongray radiative-convective equilibrium atmosphere model.
Abstract: Toaidinthephysicalinterpretationofplanetaryradii constrainedthroughobservationsoftransitingplanets,oreventuallydirectdetections,wecomputemodelradiiofpurehydrogen-helium,water,rock,andironplanets,alongwithvarious mixtures. Masses ranging from 0.01 Earth masses to 10 Jupiter masses at orbital distances of 0.02–10 AU are considered. For hydrogen-helium rich planets, our models are the first to couple planetary evolution to stellar irradiation over a wide range of orbital separations (0.02–10 AU) through a nongray radiative-convective equilibrium atmosphere model. Stellar irradiation retards the contraction of giant planets, but its effect is not a simple function of theirradiationlevel:aplanetat1AUcontractsasslowlyasaplanetat0.1AU.WeconfirmtheassertionofGuillotthat very old giant planets under modest stellar irradiation (like that received by Jupiter and Saturn) develop isothermal atmospheric radiative zones once the planet’s intrinsic flux drops to a small fraction of the incident flux. For hydrogenhelium planets, we consider cores up to 90% of the total planet mass, comparable to those of Uranus and Neptune. If ‘‘hot Neptunes’’ have maintained their original masses and are not remnants of more massive planets, radii of � 0.30– 0.45RJ areexpected.Waterplanetsare � 40%–50%largerthanrockyplanets,independentofmass.Finally,weprovide tables of planetary radii at various ages and compositions, and for ice-rock-iron planets we fit our results to analytic functions, which will allow for quick composition estimates, given masses and radii, or mass estimates, given only planetary radii. These results will assist in the interpretation of observations for both the current transiting planet surveys as well as upcoming space missions, including COROT and Kepler.

995 citations


Network Information
Related Topics (5)
Planet
27K papers, 980.6K citations
90% related
Stars
64.3K papers, 1.9M citations
88% related
Elliptical galaxy
20.9K papers, 1M citations
87% related
Galaxy
109.9K papers, 4.7M citations
87% related
Metallicity
19.4K papers, 966.7K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20227
202119
202014
20197
201814