scispace - formally typeset
Search or ask a question
Topic

Jurkat cells

About: Jurkat cells is a research topic. Over the lifetime, 10700 publications have been published within this topic receiving 528031 citations. The topic is also known as: JURKAT & JM.


Papers
More filters
Journal ArticleDOI
24 Jul 1997-Nature
TL;DR: The cloning and characterization of a human homologue of the Drosophila toll protein (Toll) is reported, which has been shown to induce the innate immune response in adult Dosophila.
Abstract: . Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kB pathway 5-7 . We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kB and the expression of NF-kB-controlled genes for the inflammatory cyto- kines IL-1, IL-6 and IL-8, as well as the expression of the co- stimulatory molecule B7.1, which is required for the activation of naive T cells. The Toll protein controls dorsal-ventral patterning in Drosophila embryos and activates the transcription factor Dorsal upon binding to its ligand Spatzle 8 . In adult Drosophila, the Toll/Dorsal signalling pathway participates in an anti-fungal immune response 2 . Signal- ling through Toll parallels the signalling pathway induced by the IL- 1 receptor (IL-1R) in mammalian cells: IL-1R signals through the NF-kB pathway, and Dorsal and its inhibitor Cactus are homo- logous to NF-kB and I-kB proteins, respectively 5,6 . Moreover, the cytoplasmic domain of Drosophila Toll is homologous to the cytoplasmic domain of IL-1R (ref. 9). Remarkably, the tobacco- virus-resistance gene that encodes N-protein is also similar to Toll in that it contains both a Toll signalling domain and an LRR domain 10 . It thus appears that the immune-response system mediated by Toll represents an ancient host defence mechanism 6 (Fig. 1). To inves- tigate the possibility that this pathway has been retained in the immune system of vertebrates, we used sequence and pattern searches 11 of the expressed-sequence tag (EST) database at the fragment was used to probe northern blots containing poly(A) + RNA from several organs. Most organs expressed two mRNA species: one of ,5 kilobases (kb) was predominant in most tissues except peripheral blood leukocytes (PBL), and corresponded to the length of the cDNA that we cloned. The lower band was ,4 kb long and this band was predominant in the PBL. The 4-kb band was not detectable in kidney, and liver did not contain any mRNA at all (Fig. 3). We also tested different mouse and human cell lines for expression of hToll mRNA by using PCR with reverse transcription (RT-PCR). We found mRNA for hToll in monocytes, macrophages, dendritic cells, g/d T cells, Th1 and Th2 a/b T cells, a small intestinal epithelial cell line, and a B-cell line (data not shown). The hToll gene is expressed most strongly in spleen and PBL (Fig. 3); its expression in other tissues may be due to the presence of macrophages and dendritic cells, in which it could act as an early-warning system for infection. Alternatively, hToll may be widely expressed because hToll signals through the conserved NF-kB pathway (see below) and NF- kB is a ubiquitous transcription factor. To characterize hToll functions and see whether it can induce transcription of immune response genes like dToll, we generated a dominant-positive mutant of hToll because the natural ligand of hToll is unknown. To produce a constitutively active mutant of hToll, we made use of genetic information from dToll: analysis of ventra- lizing mutants in Drosophila embryos had identified the function of the ectodomain C-flanking cysteine-rich region in dToll 16 as control- ling the activity of dToll in signal transduction. In three dominant

5,625 citations

Journal ArticleDOI
01 Nov 1996-Science
TL;DR: In this paper, the sensitivity and kinetics of TNF-α-induced apoptosis were shown to be enhanced in a number of cell types expressing a dominant negative IkappaBalpha (Ikappa-BalphaM).
Abstract: Tumor necrosis factor alpha (TNF-alpha) signaling gives rise to a number of events, including activation of transcription factor NF-kappaB and programmed cell death (apoptosis). Previous studies of TNF-alpha signaling have suggested that these two events occur independently. The sensitivity and kinetics of TNF-alpha-induced apoptosis are shown to be enhanced in a number of cell types expressing a dominant-negative IkappaBalpha (IkappaBalphaM). These findings suggest that a negative feedback mechanism results from TNF-alpha signaling in which NF-kappaB activation suppresses the signals for cell death.

2,515 citations

Journal ArticleDOI
26 Dec 1986-Cell
TL;DR: Phorbol-ester-mediated induction of NF-kappa B was observed in a T cell line and a nonlymphoid cell line, and is therefore not restricted to B-lymphoids cells, indicating that factors that control transcription of specific genes in specific cells may be activated by posttranslational modification of precursor factors present more widely.

1,813 citations

Journal ArticleDOI
TL;DR: It is proposed that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Abstract: Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.

1,751 citations

Journal ArticleDOI
22 Dec 1989-Cell
TL;DR: A previously undescribed adhesion molecule, VCAM-1, which is induced by cytokines on human endothelial cells and binds lymphocytes is cloned using a novel method requiring neither monoclonal antibodies nor purified protein.

1,751 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
93% related
Signal transduction
122.6K papers, 8.2M citations
92% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Immune system
182.8K papers, 7.9M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023238
2022342
2021239
2020283
2019263
2018287