scispace - formally typeset
Search or ask a question
Topic

k-means clustering

About: k-means clustering is a research topic. Over the lifetime, 9604 publications have been published within this topic receiving 191548 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Abstract: In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method-the K-SVD algorithm-generalizing the K-means clustering process. K-SVD is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data

8,905 citations

Journal ArticleDOI
01 Jun 2010
TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Abstract: Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into a system of ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is to find structure in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first published in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, K-means is still widely used. This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous feature selection during data clustering, and large scale data clustering.

6,601 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations

Journal ArticleDOI
TL;DR: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
Abstract: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification, clustering, statistical learning, association analysis, and link mining, which are all among the most important topics in data mining research and development.

4,944 citations

Book ChapterDOI
15 Sep 2008
TL;DR: Cluster analysis as mentioned in this paper is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics, which is one of the most fundamental modes of understanding and learning.
Abstract: The practice of classifying objects according to perceived similarities is the basis for much of science. Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms in to taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes cluster analysis (unsupervised learning) from discriminant analysis (supervised learning). The objective of cluster analysis is to simply find a convenient and valid organization of the data, not to establish rules for separating future data into categories.

4,255 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Fuzzy logic
151.2K papers, 2.3M citations
89% related
Artificial neural network
207K papers, 4.5M citations
89% related
Deep learning
79.8K papers, 2.1M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022153
2021622
2020809
2019858
2018789