scispace - formally typeset
Search or ask a question
Topic

Kalman filter

About: Kalman filter is a research topic. Over the lifetime, 48325 publications have been published within this topic receiving 936765 citations. The topic is also known as: linear quadratic estimation & LQE.


Papers
More filters
Journal ArticleDOI
08 Nov 2004
TL;DR: The motivation, development, use, and implications of the UT are reviewed, which show it to be more accurate, easier to implement, and uses the same order of calculations as linearization.
Abstract: The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale of the updates. Many of these difficulties arise from its use of linearization. To overcome this limitation, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. It is more accurate, easier to implement, and uses the same order of calculations as linearization. This paper reviews the motivation, development, use, and implications of the UT.

6,098 citations

Journal ArticleDOI
TL;DR: The Condensation algorithm uses “factored sampling”, previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set.
Abstract: The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimo dal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. Condensation uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near real-time.

5,804 citations

Proceedings ArticleDOI
28 Jul 1997
TL;DR: It is argued that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
Abstract: The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearizes all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterize mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalizes elegantly to nonlinear systems without the linearization steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.

5,314 citations

Book
30 Mar 1990
TL;DR: In this article, the Kalman filter and state space models were used for univariate structural time series models to estimate, predict, and smoothen the univariate time series model.
Abstract: List of figures Acknowledgement Preface Notation and conventions List of abbreviations 1. Introduction 2. Univariate time series models 3. State space models and the Kalman filter 4. Estimation, prediction and smoothing for univariate structural time series models 5. Testing and model selection 6. Extensions of the univariate model 7. Explanatory variables 8. Multivariate models 9. Continuous time Appendices Selected answers to exercises References Author index Subject index.

5,071 citations

Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,996 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
91% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Artificial neural network
207K papers, 4.5M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
86% related
Nonlinear system
208.1K papers, 4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,849
20224,170
20212,114
20202,565
20192,832
20182,693