scispace - formally typeset
Search or ask a question
Topic

Katz centrality

About: Katz centrality is a research topic. Over the lifetime, 601 publications have been published within this topic receiving 77858 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a new definition of eigenvector centrality that relies on the Perron eigen vector of a multi-homogeneous map defined in terms of the tensor describing the network.
Abstract: Eigenvector-based centrality measures are among the most popular centrality measures in network science. The underlying idea is intuitive and the mathematical description is extremely simple in the framework of standard, mono-layer networks. Moreover, several efficient computational tools are available for their computation. Moving up in dimensionality, several efforts have been made in the past to describe an eigenvector-based centrality measure that generalizes Bonacich index to the case of multiplex networks. In this work, we propose a new definition of eigenvector centrality that relies on the Perron eigenvector of a multi-homogeneous map defined in terms of the tensor describing the network. We prove that existence and uniqueness of such centrality are guaranteed under very mild assumptions on the multiplex network. Extensive numerical studies are proposed to test the newly introduced centrality measure and to compare it to other existing eigenvector-based centralities.

43 citations

Journal ArticleDOI
TL;DR: It is validated the concept of time centrality showing that diffusion starting at the best ranked time instants (i.e., the most central ones), according to the metrics, can perform a faster and more efficient diffusion process.
Abstract: There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best ranked time instants (i.e., the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.

43 citations

Journal ArticleDOI
TL;DR: The use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed, using the eigencentrality method, which is based on the heuristic that thecentrality of a node depends on how central are the nodes in the immediate neighbourhood.
Abstract: One of the most important problems in complex network’s theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases.

42 citations

Book ChapterDOI
23 May 2006
TL;DR: In this paper, a method based on the degree centrality, eigenvector centrality and dependence centrality measures is proposed to construct the hierarchical structure of complex networks, which is tested on the September 11, 2001 terrorist network constructed by Valdis Krebs.
Abstract: This paper uses centrality measures from complex networks to discuss how to destabilize terrorist networks. We propose newly introduced algorithms for constructing hierarchy of covert networks, so that investigators can view the structure of terrorist networks / non-hierarchical organizations, in order to destabilize the adversaries. Based upon the degree centrality, eigenvector centrality, and dependence centrality measures, a method is proposed to construct the hierarchical structure of complex networks. It is tested on the September 11, 2001 terrorist network constructed by Valdis Krebs. In addition we also propose two new centrality measures i.e., position role index (which discovers various positions in the network, for example, leaders / gatekeepers and followers) and dependence centrality (which determines who is depending on whom in a network). The dependence centrality has a number of advantages including that this measure can assist law enforcement agencies in capturing / eradicating of node (terrorist) which may disrupt the maximum of the network.

40 citations

Journal ArticleDOI
TL;DR: A novel measure based on local centrality with a coefficient, which ranks nodes that have the same number of four-layer neighbors and distinguishes node influence most effectively among the six tested measures.
Abstract: Influential nodes are rare in social networks, but their influence can quickly spread to most nodes in the network. Identifying influential nodes allows us to better control epidemic outbreaks, accelerate information propagation, conduct successful e-commerce advertisements, and so on. Classic methods for ranking influential nodes have limitations because they ignore the impact of the topology of neighbor nodes on a node. To solve this problem, we propose a novel measure based on local centrality with a coefficient. The proposed algorithm considers both the topological connections among neighbors and the number of neighbor nodes. First, we compute the number of neighbor nodes to identify nodes in cluster centers and those that exhibit the “bridge” property. Then, we construct a decreasing function for the local clustering coefficient of nodes, called the coefficient of local centrality, which ranks nodes that have the same number of four-layer neighbors. We perform experiments to measure node influence on both real and computer-generated networks using six measures: Degree Centrality, Betweenness Centrality, Closeness Centrality, K-Shell, Semi-local Centrality and our measure. The results show that the rankings obtained by the proposed measure are most similar to those of the benchmark Susceptible-Infected-Recovered model, thus verifying that our measure more accurately reflects the influence of nodes than do the other measures. Further, among the six tested measures, our method distinguishes node influence most effectively.

40 citations


Network Information
Related Topics (5)
Social network
42.9K papers, 1.5M citations
70% related
Graph (abstract data type)
69.9K papers, 1.2M citations
67% related
Node (networking)
158.3K papers, 1.7M citations
65% related
Markov chain
51.9K papers, 1.3M citations
65% related
Server
79.5K papers, 1.4M citations
64% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202232
202114
202013
201919
201824