scispace - formally typeset
Search or ask a question
Topic

Keratan sulfate

About: Keratan sulfate is a research topic. Over the lifetime, 1253 publications have been published within this topic receiving 57984 citations. The topic is also known as: keratan sulfate & KS.


Papers
More filters
Journal ArticleDOI
TL;DR: It is postulated that most species of glycosaminoglycans restricted non-specific fluid phase complement consumption induced by LIS, an effect which conserved complement and thereby enhanced the subsequent residual serum C mediated hemolytic activity.

13 citations

Journal ArticleDOI
TL;DR: The regulatory mechanisms for the glycosaminoglycan sulfotransferases in fetal calf serum were investigated and it was demonstrated that heparin specifically binds to the three enzymes, which have anionic isoelectric points, and that chondroitin 6-sulfate, spermine, and polylysine bind to the former two enzymes under physiological conditions.
Abstract: The regulatory mechanisms for the glycosaminoglycan sulfotransferases in fetal calf serum were investigated. The enzymes examined were those which transfer sulfate from 3'-phosphoadenosine 5'-phosphosulfate to 1) position 6 of the internal N-acetylgalactosamine units of chondroitin, 2) position 6 of galactose units of keratan sulfate, and 3) position 2 (an amino group) of glucosamine units of heparan sulfate. The former two enzymes were activated by spermidine, spermine, protamine, and poly L-lysine. All the enzymes were strongly inhibited by heparin and dextran sulfate, whereas only the chondroitin 6-O-sulfotransferase was inhibited by sulfated galactosaminoglycans. The inhibition of this enzyme by the sulfated glycosaminoglycans was abolished by polylysine, indicating that the activation by polylysine is partly due to the neutralization of endogenous acidic inhibitors, including sulfated glycosaminoglycans. Affinity chromatographic studies demonstrated that heparin specifically binds to the three enzymes, which have anionic isoelectric points, and that chondroitin 6-sulfate, spermine, and polylysine bind to the former two enzymes under physiological conditions. Thus, the activation by spermine and polylysine as well as the inhibition by sulfated glycosaminoglycans also appears to occur through their binding to the enzymes. Studies with synthetic lysine oligomers and an affinity-purified (approximately 700-fold) fraction containing the former two enzymes indicated that the pentamer is the minimum unit required for the activation. A synthetic peptide, containing six consecutive lysines at the carboxy terminus of the human c-Ki-ras 2 protein, also regulated the two enzyme activities at micromolar concentrations. The possible physiological implications of the observed effects of these regulatory substances on the glycosaminoglycan sulfotransferases are discussed in relation to glycosaminoglycan synthesis during the proliferation, differentiation, and transformation of cells. The possibility of sulfated glycosaminoglycans being enzyme regulators is also discussed.

13 citations

Journal ArticleDOI
TL;DR: The rate of in vivo turnover and in vitro synthesis of the glycosaminoglycans (GAGs) of the dental pulp loose connective tissue from rat maxillary incisors has been investigated by isotope methods and the chondroitin-4-sulfate fraction was shown to have a more rapid turnover in vivo.
Abstract: – The rate of in vivo turnover and in vitro synthesis of the glycosaminoglycans (GAGs; acid mucopolysaccharides) of the dental pulp loose connective tissue from rat maxillary incisors has been investigated by isotope methods. The biologic half-life of 35SO4 in whole tissue digests was found to be 4.5 d. Of the sulfated GAGs the chondroitin-4-sulfate fraction was shown to have a more rapid turnover in vivo than the chondroitin-6-sulfate fraction, 4.1 and 5.2 d, respectively. The fraction containing keratan sulfate and glycoproteins had a biologic half-life of 6.8 d. Slices of rat incisor pulps were incubated in vitro with 35SO4 and the rate of incorporation into the different GAG fractions was determined. After a lag-phase of 15 min, this rate was linear with time. The chondroitin-6-sulfate fraction showed a more rapid uptake than the chondroitin-4-sulfate fraction, and the uptake by keratan sulfate + glycoprotein fraction was much lower. A similar in vitro experiment using [14C] acetate was performed. Contrary to the sulfate incorporation there was an extended lag-phase, and the total incorporation was much lower.

13 citations

Journal ArticleDOI
TL;DR: These studies show that changes in aggrecan epitopes and GAG in synovial fluid reflect changes in cartilage metabolism induced by acute transient inflammation.
Abstract: OBJECTIVE: To determine how acute but transient inflammation affects the cartilage proteoglycan aggrecan and the value of analyses of synovial fluid to study this. METHODS: For 96 hours after a single intra-articular injection of rabbit knees with human interleukin-1 alpha (IL-1 alpha) or vehicle, articular cartilage and synovial fluid were examined using a putative indicator of aggrecan synthesis (aggrecan chondroitin sulphate epitope 846), immunoreactive keratan sulphate, and total glycosaminoglycan (GAG) content. Aggrecan extractability (with 0.5 M NaCl) followed by 4 M guanidine hydrochloride extraction permitted analyses of cartilage damage, total content and aggrecan heterogeneity. Aggrecan epitopes as well as GAG were assayed in synovial fluid. Changes were related to total joint leucocyte content in synovial fluid. RESULTS: At 10 ng, IL-1 alpha produced a transient increase in synovial fluid leucocytes at six hours and 24 hours. This accompanied a reduction in content and increased extractability of GAG, which was greatest in the tibial medial compartment of the knee. Further studies of this compartment showed no change in keratan sulphate epitope content, but a transient increase in extractability in 0.5 M NaCl. Epitope 846 content and extractability were unchanged. Total contents and extractability for GAG were inversely correlated in both controls and joints injected with IL-1 alpha. These changes were accompanied by transient increases in GAG, keratan sulphate epitope, and 846 content in synovial fluid. CONCLUSION: According to the aggrecan component measured, damage to the matrix of articular cartilage was sometimes reflected by a transient increased extractability and a net loss of aggrecan. There was always an increased release of GAG, and keratan sulphate, and 846 epitopes into synovial fluid. These studies show that changes in aggrecan epitopes and GAG in synovial fluid reflect changes in cartilage metabolism induced by acute transient inflammation.

13 citations

Journal ArticleDOI
TL;DR: Under estrogen deficiency, the extracellular matrix of articular cartilage underwent similar changes to those observed in physiologically aging cartilage where keratan sulfate is increased as a heavy sulfated glycosaminoglycan.
Abstract: Clinical observations have suggested that estrogens are involved in the pathogenesis of postmenopausal osteoarthritis (OA). However, positive and negative associations between the incidence of OA and serum estrogen concentrations have been reported. In contrast to this, osteoporosis is regarded as a disease with a strong estrogen-dependent component. Moreover, there is an interaction between estrogen and calcium deficiency: calcium supplementation potentiates the effect of estrogen therapy. The present study was designed to investigate how estrogen deficiency affects the articular cartilage depending on calcium supply. The distribution of different types of glycosaminoglycans and collagens can be used as an indicator for extracellular matrix changes induced by estrogen deficiency. Different levels of dietary calcium were therefore fed to intact and ovariectomized Gottingen miniature pigs for one year before articular cartilage was harvested. The histochemical staining for heavy sulfated glycosaminoglycans in the extracellular matrix of ovariectomized miniature pigs, especially of those fed with a low calcium diet, was stronger in comparison to intact animals. In intact animals type II-collagen was immunodetected in all zones of unmineralized and mineralized articular cartilage, while immunostaining for this protein was negative to weak in the deep radiated fiber zone of ovariectomized minipigs. These results suggest that the synthesis of heavy sulfated glycosaminoglycans and immunohistochemically detectable type II-collagen is possibly influenced by estrogen deficiency. In conclusion, under estrogen deficiency, the extracellular matrix of articular cartilage underwent similar changes to those observed in physiologically aging cartilage where keratan sulfate is increased as a heavy sulfated glycosaminoglycan.

13 citations


Network Information
Related Topics (5)
Extracellular matrix
32.5K papers, 1.7M citations
77% related
Growth factor
34.3K papers, 2.1M citations
76% related
Protein subunit
33.2K papers, 1.7M citations
73% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Cell culture
133.3K papers, 5.3M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202222
20217
20209
201912
201812