scispace - formally typeset
Search or ask a question
Topic

Keratan sulfate

About: Keratan sulfate is a research topic. Over the lifetime, 1253 publications have been published within this topic receiving 57984 citations. The topic is also known as: keratan sulfate & KS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors used suitably protected tetrasaccharides and octasaccharide sequences as key building blocks to synthesize polylactosamine fragments up to 22-mer.
Journal ArticleDOI
TL;DR: In this article , a recombinant cochlin fused to human IgG-Fc or Protein A at the C-terminus was used as a detection and purification tag and investigated the ligand specificity of Cochlin.
Abstract: Glycosaminoglycan (GAG) is a polysaccharide present on the cell surface as an extracellular matrix component, and is composed of repeating disaccharide units consisting of an amino sugar and uronic acid except in the case of the keratan sulfate. Sulfated GAGs, such as heparan sulfate, heparin, and chondroitin sulfate mediate signal transduction of growth factors, and their functions vary with the type and degree of sulfated modification. We have previously identified human and mouse cochlins as proteins that bind to sulfated GAGs. Here, we prepared a recombinant cochlin fused to human IgG-Fc or Protein A at the C-terminus as a detection and purification tag and investigated the ligand specificity of cochlin. We found that cochlin can be used as a specific probe for highly sulfated heparan sulfate and chondroitin sulfate E. We then used mutant analysis to identify the mechanism by which cochlin recognizes GAGs and developed a GAG detection system using cochlin. Interestingly, a mutant lacking the vWA2 domain bound to various types of GAGs. The N-terminal amino acid residues of cochlin contributed to its binding to heparin. Pathological specimens from human myocarditis patients were stained with a cochlin-Fc mutant. The results showed that both tryptase-positive and tryptase-negative mast cells were stained with this mutant. The identification of detailed modification patterns of GAGs is an important method to elucidate the molecular mechanisms of various diseases. The method developed for evaluating the expression of highly sulfated GAGs will help understand the biological and pathological importance of sulfated GAGs in the future.
Journal ArticleDOI
20 Dec 2017
TL;DR: This document is intended to assist in the preparation of future studies on £20,000 compensation for damages caused by the earthquake in Nepal.
Abstract: The prevalence of periodontal disease, in particular of generalized periodontitis, has increased up to 98.5% over the past decades. The topical issue of modern dentistry is to fi nd the cause-effect relations of the development of infl ammatory and dystrophic infl ammatory periodontal diseases. It has been established that sulfated and non-sulfated glycosaminoglycans (GAGs) support the structure of periodontal tissues. The group of sulfated glycosaminoglycans (sGAGs) is represented in the bone tissue of the alveolar ridges by chondroitin sulfates, dermatan sulfate, keratan sulfate and heparan sulfate. Hyaluronic acid, which belongs to non-sulfated glycosaminoglycans, is present in a small amount. The role of biofi lm proteinase is important in the pathogenesis of gingivitis and periodontitis, when the activity of acidic and faintly acid proteinases of dental deposits and gum tissues increases 4-5 times. This process is accompanied by degradation of glycoproteins and other proteins of periodontal tissues. The enzymes of beta-glucuronidase, hyaluronidase, beta-NAcetylhexosaminidase and chondroitin sulfatase are actively involved in the cleavage of acid glycosaminoglycans and glycoproteins of the intercellular substance, periodontal cell membranes, and thus the destruction of circular ligament and periodontal tissues in general. Healing, as a complex dynamic process, is implemented with the inclusion of soluble mediators, blood cells, components of the extracellular matrix and resistant cells involved in recovery and tissue integration. Therefore, the role of GAGs in the processes of periodontal healing is active: 1. Inhibition of synthesis of lipids; 2. Inhibition of activity of proteolytic enzymes; 3. Inhibition of synergistic effect of enzymes and oxygen radicals; 4. Reduction of biosynthesis of infl ammation mediators due to masking of secondary antigenic determinants and inhibition of chemotaxis; 5. Inhibition of apoptosis; 6. Construction of collagen fi bers; 7. Regulation of cell proliferation; 8. Regulation of biosynthesis of the intercellular matrix components; 9. Improvement of microcirculation processes; 10. Rearrangement in structures of proteoglycans; 11. Regulation of chondro- and osteogenesis. The references present a generalized formulation of the main mechanisms of effect of periodontal structures glycosaminoglycans, which is relevant and requires further studying.
Journal ArticleDOI
TL;DR: In this article , the authors quantified the different types of glycosaminoglycans (GAGs) in the blood and urine of systemic sclerosis patients using hexuronic acid and electrophoretic fractionation.
Abstract: Systemic sclerosis (SSc) is a chronic connective tissue disease characterized by immune system dysfunction, vasculopathy, and progressive fibrosis of the skin and internal organs, resulting from excessive accumulation of extracellular matrix (ECM) elements, including collagen and proteoglycans (PGs). An uncontrolled PG proliferation, caused by disturbances in their metabolism in tissues, is most likely reflected in the quantitative changes of their components, i.e., glycosaminoglycans (GAGs), in body fluids. Therefore, the aim of this study was to quantify the different types of GAGs in the blood and urine of systemic sclerosis patients. Chondroitin/dermatan sulfates (CS/DS) and heparan sulfates/heparin (HS/H) were quantified by hexuronic acid assay and electrophoretic fractionation, while hyaluronic acid (HA) and keratan sulfates were evaluated using ELISA tests. In turn, individual urinary GAGs were determined using the Blyscan™ Sulfated Glycosaminoglycan Assay Kit. Our results showed that the plasma concentrations of CS/DS, HS/H, HA, and KS in systemic sclerosis patients were significantly higher compared with those in healthy subjects. In the case of urine measurements, we have found that in SSc patients, CS/DC concentrations were significantly higher, while HA concentrations were significantly lower compared with the values observed in the urine of healthy subjects. Importantly, the found by us correlations between plasma keratan sulfate levels and both the duration of the disease and the severity of skin lesions, as expressed by the Rodnan scale, seems to suggest this GAG as a potential marker in assessing disease progression and activity. In addition, a level of urinary excretion of all types of GAGs due to their high positive correlation with uACR, may be a valuable complementary test in the diagnosis of early renal dysfunction in the course of SSc.

Network Information
Related Topics (5)
Extracellular matrix
32.5K papers, 1.7M citations
77% related
Growth factor
34.3K papers, 2.1M citations
76% related
Protein subunit
33.2K papers, 1.7M citations
73% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Cell culture
133.3K papers, 5.3M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202222
20217
20209
201912
201812