scispace - formally typeset

Topic

Kernel (image processing)

About: Kernel (image processing) is a(n) research topic. Over the lifetime, 12078 publication(s) have been published within this topic receiving 238125 citation(s). The topic is also known as: convolution matrix & mask.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,901 citations

Journal ArticleDOI
TL;DR: A new kernelized correlation filter is derived, that unlike other kernel algorithms has the exact same complexity as its linear counterpart, which is called dual correlation filter (DCF), which outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite being implemented in a few lines of code.
Abstract: The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies—any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.

3,880 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: An extension of the SPM method is developed, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and a linear SPM kernel based on SIFT sparse codes is proposed, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.
Abstract: Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n2 ~ n3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably reduces the complexity of SVMs to O(n) in training and a constant in testing. In a number of image categorization experiments, we find that, in terms of classification accuracy, the suggested linear SPM based on sparse coding of SIFT descriptors always significantly outperforms the linear SPM kernel on histograms, and is even better than the nonlinear SPM kernels, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.

2,968 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This work proposes a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation, and shows how to jointly optimize the dimension reduction and the indexing algorithm.
Abstract: We address the problem of image search on a very large scale, where three constraints have to be considered jointly: the accuracy of the search, its efficiency, and the memory usage of the representation. We first propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation. We then show how to jointly optimize the dimension reduction and the indexing algorithm, so that it best preserves the quality of vector comparison. The evaluation shows that our approach significantly outperforms the state of the art: the search accuracy is comparable to the bag-of-features approach for an image representation that fits in 20 bytes. Searching a 10 million image dataset takes about 50ms.

2,439 citations

Posted Content
TL;DR: A new Deep Adaptation Network (DAN) architecture is proposed, which generalizes deep convolutional neural network to the domain adaptation scenario and can learn transferable features with statistical guarantees, and can scale linearly by unbiased estimate of kernel embedding.
Abstract: Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation Network (DAN) architecture, which generalizes deep convolutional neural network to the domain adaptation scenario. In DAN, hidden representations of all task-specific layers are embedded in a reproducing kernel Hilbert space where the mean embeddings of different domain distributions can be explicitly matched. The domain discrepancy is further reduced using an optimal multi-kernel selection method for mean embedding matching. DAN can learn transferable features with statistical guarantees, and can scale linearly by unbiased estimate of kernel embedding. Extensive empirical evidence shows that the proposed architecture yields state-of-the-art image classification error rates on standard domain adaptation benchmarks.

2,320 citations


Network Information
Related Topics (5)
Convolutional neural network

74.7K papers, 2M citations

85% related
Image processing

229.9K papers, 3.5M citations

85% related
Image segmentation

79.6K papers, 1.8M citations

84% related
Feature extraction

111.8K papers, 2.1M citations

83% related
Deep learning

79.8K papers, 2.1M citations

83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021721
2020964
2019991
2018902
2017849