scispace - formally typeset
Search or ask a question
Topic

Kernel principal component analysis

About: Kernel principal component analysis is a research topic. Over the lifetime, 5349 publications have been published within this topic receiving 167800 citations. The topic is also known as: kernel PCA.


Papers
More filters
Book

[...]

01 May 1986
TL;DR: In this article, the authors present a graphical representation of data using Principal Component Analysis (PCA) for time series and other non-independent data, as well as a generalization and adaptation of principal component analysis.
Abstract: Introduction * Properties of Population Principal Components * Properties of Sample Principal Components * Interpreting Principal Components: Examples * Graphical Representation of Data Using Principal Components * Choosing a Subset of Principal Components or Variables * Principal Component Analysis and Factor Analysis * Principal Components in Regression Analysis * Principal Components Used with Other Multivariate Techniques * Outlier Detection, Influential Observations and Robust Estimation * Rotation and Interpretation of Principal Components * Principal Component Analysis for Time Series and Other Non-Independent Data * Principal Component Analysis for Special Types of Data * Generalizations and Adaptations of Principal Component Analysis

17,426 citations

Journal ArticleDOI

[...]

8,035 citations

Journal ArticleDOI

[...]

TL;DR: A new method for performing a nonlinear form of principal component analysis by the use of integral operator kernel functions is proposed and experimental results on polynomial feature extraction for pattern recognition are presented.
Abstract: A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

7,611 citations

Journal ArticleDOI

[...]

TL;DR: This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods.
Abstract: This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

3,466 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis.
Abstract: Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.

2,983 citations


Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Feature (computer vision)
128.2K papers, 1.7M citations
85% related
Deep learning
79.8K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202292
2021138
2020152
2019173
2018206