scispace - formally typeset
Search or ask a question
Topic

Ketone

About: Ketone is a research topic. Over the lifetime, 28264 publications have been published within this topic receiving 436250 citations. The topic is also known as: ketones.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols, where the stoichiometric reagent in the reduction is borane and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone).
Abstract: We have recently described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols.' The stoichiometric reagent in the reduction is borane (usually 0.6 molfmol of ketone), and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone). Excellent enantioselectivities, easy recoverability of the chiral catalyst predecessor, near quantitative yields, short reaction times (a few minutes at 23 \"C), and predictability of the absolute configuration of the product contribute to the outstanding utility of this (CBS') process. This paper reports several subsequent developments in this area with respect to improved practicality and important applications. In contrast to 1 which is both air and moisture sensitive, the B-methylated oxazaborolidine 2 can be stored in closed containers at room temperature and weighed or transferred in air. Catalyst 2 is also much more easily prepared than 1. Reaction of (S)-

773 citations

Journal ArticleDOI
TL;DR: In this article, the palladium-catalyzed α-arylation of ketones has become a useful and general synthetic method, and the reduction of the carbon−carbon bond of the product is formed by reductive elimination from an arylpalladium enolate intermediate.
Abstract: The palladium-catalyzed α-arylation of ketones has become a useful and general synthetic method. In this process, an enolate is generated from a ketone and base in the presence of an aryl halide, and a palladium catalyst couples this enolate with the aryl halide. With the advent of new catalysts composed of sterically hindered, electron-rich alkylphosphine and N-heterocyclic carbene ligands, this process now encompasses a broad range of enolates and related anions, including those derived from amides, esters, aldehydes, nitriles, malonates, cyanoesters, nitroalkanes, sulfones, and lactones. In the proposed mechanism for this reaction, the carbon−carbon bond of the product is formed by reductive elimination from an arylpalladium enolate intermediate. The structures and reactions of arylpalladium complexes of enolate, cyanoalkyl, and malonate ions have been studied to determine how the binding mode and electronic and steric parameters influence the rate and mechanism of reductive elimination.

773 citations

Journal ArticleDOI
TL;DR: In this paper, a mixture of cyclohexene, 1-pentene, and 1-cyclohexylborane was used for the identification of tripentylboranes.
Abstract: General Oxygenation Procedure. An apparently heterogeneous mixture of an olefin (cyclohexene, 1-pentene, or styrene, 1 g), NaBH, (300 mg, 7.9 mmol), (OEP)RhnxCl (4.0 mg, 6 pmol; [Rh] = 0.6 mM), and an internal standard (p-xylene, mesitylene, or durene, appropriate amount) in dry THF (10 mL) exposed to dry air was stirred a t 20-25 \"C. The oxygenation of 1-methylcyclohexene was carried out by using the rhodium catalyst in an amount 2 or 20 times as much as that used above ([Rh] = 1.2 or 12 mM). The electronic spectra of the reaction mixture underwent no significant change even after 100 h. The formation of oxygenation products was monitored by gas chromatography. Similarly was carried out the oxygenation of 1,5-cyclooctadiene and acetylenes (1-heptyne and 3-heptyne) by using substrate (300 mg), NaBH, (300 mg), and (OEP)RhmC1 or (TPP)RhInC1 (4.0 mg) in THF (20 mL). Reaction products, after conversion if necessary to silylated derivatives, were identified by gas chromatography on the basis of coinjection with authentic samples, and their yields determined also by gas chromatography. 2-Methylcyclohexanol as a mixture of stereoisomers arising from the oxygenation of 1-methylcyclohexene was purified by preparative gas chromatography. The stereoisomer distribution was determined by 'H NMR spectroscopy by taking advantage of the characteristic signals for hydroxymethine protons a t 6 3.1 (for E isomer) and 3.75 (for 2 isomer). The following control runs were carried out by using cyclohexene as substrate: (1) without rhodium porphyrin catalyst, (2) without 02, (3) without NaBH,, and (4) with NaBH(OCHJ3 in place of NaBH,. In neither case was detected oxygenation of substrate to any significant extent. Another control run using cyclohexene oxide in place of cyclohexene under otherwise identical oxygenation conditions did not give cyclohexanol. Borane Transfer. A mixture of (0EP)Rh\"'Cl (40 mg, 0.06 mmol), NaBH4 (100 mg, 2.64 mmol), and 1-pentene (70 mg, 1.0 mmol) in T H F (2 mL) in a vessel sealed with a rubber septum was degassed by freezepumpthaw cycles and was stirred a t room temperature for 19 h. The electronic spectrum of the mixture showed A, a t 395,514, and 545 nm, indicating the formation of (OEP)RhH? Following the standard procedure for the analysis of organoboranes,28 the mixture was then subjected to gas chromatography at 170 OC on a column of silicone SE-30 (2 m), which had been treated with Silyl-8 (Pierce Chemical Co.) to mask protic sites with trimethylsilyl groups. The product was readily identified as tripentylborane on the basis of coinjection with the authentic sample prepared by hydroboration of olefin with diborane under standard conditions. The mixture was exposed to air, stirred for 20 min, and then analyzed by gas chromatography to show the formation of 1-pentanol and 2-pentanol (94:6, in a total yield of 45% based on mol of Rh complex used). Oxidation of Alkylborane. A T H F solution of (E)-bis(2methy1cyclohexyl)borane\" was prepared by the hydroboration of 1-methylcyclohexene (96 mg, 1.0 mmol) with borane-THF (1 M) (0.5 mL, 0.5 mmol) in THF (1 mL) under nitrogen. To this was added 1 N aqueous NaOH (0.5 mL), and the mixture was stirred under air atmosphere for 20 h. Gas chromatographic analysis using silicone DCQF-1 showed the formation of 2methylcyclohexanol with the stereoisomer ratio of E / Z = 7624. Another control run for the oxidation of alkylborane with O2 was carried out in the presence of NaBH, (38 mg, 1.0 mmol) instead of aqueous NaOH under otherwise identical conditions and gave the isomer ratio of E / Z = 81:19. A solution of (E)-bis(2-methylcyclohexyl)borane in THF (0.21 mL) was prepared as above starting from the olefin (15.4 mg, 0.16 mmol). This solution was added to (OEP)RhH15 (100 mg, 0.16 mmol) under nitrogen. The mixture was then allowed to contact with a gentle stream of THF-saturated air for 20 h. Gas chromatography coupled with 'H NMR analysis indicated almost exclusive formation of (E)-2-methylcyclohexanol.

746 citations

Journal ArticleDOI
16 May 1997-Science
TL;DR: The versatility of this technology was demonstrated by an example of selective drug delivery, where cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate.
Abstract: Cell surface oligosaccharides can be engineered to display unusual functional groups for the selective chemical remodeling of cell surfaces. An unnatural derivative of N-acetyl-mannosamine, which has a ketone group, was converted to the corresponding sialic acid and incorporated into cell surface oligosaccharides metabolically, resulting in the cell surface display of ketone groups. The ketone group on the cell surface can then be covalently ligated under physiological conditions with molecules carrying a complementary reactive functional group such as the hydrazide. Cell surface reactions of this kind should prove useful in the introduction of new recognition epitopes, such as peptides, oligosaccharides, or small organic molecules, onto cell surfaces and in the subsequent modulation of cell-cell or cell-small molecule binding events. The versatility of this technology was demonstrated by an example of selective drug delivery. Cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate.

727 citations

Journal ArticleDOI
TL;DR: In this paper, a method was developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite ∗ XAD-4 resins in series using a two column array of XAD 8 and XAD 4 resins.

690 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
96% related
Aryl
95.6K papers, 1.3M citations
96% related
Enantioselective synthesis
58.1K papers, 1.6M citations
94% related
Intramolecular force
41.6K papers, 772.2K citations
94% related
Palladium
64.7K papers, 1.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023325
2022640
2021329
2020356
2019478
2018504