scispace - formally typeset
Search or ask a question
Topic

Key distribution

About: Key distribution is a research topic. Over the lifetime, 7788 publications have been published within this topic receiving 198465 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper suggests ways to solve currently open problems in cryptography, and discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.
Abstract: Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

14,980 citations

Journal ArticleDOI
TL;DR: Several models are formulated in which the security of protocols can be discussed precisely, and algorithms and characterizations that can be used to determine protocol security in these models are given.
Abstract: Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.

5,145 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Journal ArticleDOI
TL;DR: It is proved that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure, and a key distribution protocol based on entanglement purification is given, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol.
Abstract: We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.

2,595 citations

Book ChapterDOI
Taher Elgamal1
19 Aug 1984
TL;DR: In this article, a new signature scheme is proposed together with an implementation of the Diffie-Hellman key distribution scheme that achieves a public key cryptosystem and the security of both systems relies on the difficulty of computing discrete logarithms over finite fields.
Abstract: A new signature scheme is proposed together with an implementation of the Diffie - Hellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.

2,351 citations


Network Information
Related Topics (5)
Encryption
98.3K papers, 1.4M citations
87% related
Network packet
159.7K papers, 2.2M citations
85% related
Server
79.5K papers, 1.4M citations
83% related
Wireless ad hoc network
49K papers, 1.1M citations
82% related
Node (networking)
158.3K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202278
2021135
2020213
2019244
2018245