scispace - formally typeset
Search or ask a question

Showing papers on "Key distribution in wireless sensor networks published in 2002"


Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations


Proceedings ArticleDOI
07 Nov 2002
TL;DR: S-MAC uses three novel techniques to reduce energy consumption and support self-configuration, and applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network.
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks Wireless sensor networks use battery-operated computing and sensing devices A network of these devices will collaborate for a common application such as environmental monitoring We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 80211 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important S-MAC uses three novel techniques to reduce energy consumption and support self-configuration To reduce energy consumption in listening to an idle channel, nodes periodically sleep Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes Unlike PAMAS, it only uses in-channel signaling Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley The experiment results show that, on a source node, an 80211-like MAC consumes 2-6 times more energy than S-MAC for traffic load with messages sent every 1-10 s

5,117 citations


Proceedings ArticleDOI
28 Sep 2002
TL;DR: An in-depth study of applying wireless sensor networks to real-world habitat monitoring and an instance of the architecture for monitoring seabird nesting environment and behavior is presented.
Abstract: We provide an in-depth study of applying wireless sensor networks to real-world habitat monitoring. A set of system design requirements are developed that cover the hardware design of the nodes, the design of the sensor network, and the capabilities for remote data access and management. A system architecture is proposed to address these requirements for habitat monitoring in general, and an instance of the architecture for monitoring seabird nesting environment and behavior is presented. The currently deployed network consists of 32 nodes on a small island off the coast of Maine streaming useful live data onto the web. The application-driven design exercise serves to identify important areas of further work in data sampling, communications, network retasking, and health monitoring.

4,623 citations


Proceedings ArticleDOI
18 Nov 2002
TL;DR: A key-management scheme designed to satisfy both operational and security requirements of DSNs is presented, which relies on probabilistic key sharing among the nodes of a random graph and uses simple protocols for shared-key discovery and path-key establishment, and for key revocation, re-keying, and incremental addition of nodes.
Abstract: Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable nodes. DSNs may be deployed in hostile areas where communication is monitored and nodes are subject to capture and surreptitious use by an adversary. Hence DSNs require cryptographic protection of communications, sensor-capture detection, key revocation and sensor disabling. In this paper, we present a key-management scheme designed to satisfy both operational and security requirements of DSNs. The scheme includes selective distribution and revocation of keys to sensor nodes as well as node re-keying without substantial computation and communication capabilities. It relies on probabilistic key sharing among the nodes of a random graph and uses simple protocols for shared-key discovery and path-key establishment, and for key revocation, re-keying, and incremental addition of nodes. The security and network connectivity characteristics supported by the key-management scheme are discussed and simulation experiments presented.

3,900 citations


Journal ArticleDOI
09 Dec 2002
TL;DR: This work presents the Tiny AGgregation (TAG) service for aggregation in low-power, distributed, wireless environments, and discusses a variety of optimizations for improving the performance and fault tolerance of the basic solution.
Abstract: We present the Tiny AGgregation (TAG) service for aggregation in low-power, distributed, wireless environments. TAG allows users to express simple, declarative queries and have them distributed and executed efficiently in networks of low-power, wireless sensors. We discuss various generic properties of aggregates, and show how those properties affect the performance of our in network approach. We include a performance study demonstrating the advantages of our approach over traditional centralized, out-of-network methods, and discuss a variety of optimizations for improving the performance and fault tolerance of the basic solution.

3,166 citations


Journal ArticleDOI
TL;DR: A suite of security protocols optimized for sensor networks: SPINS, which includes SNEP and μTESLA and shows that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of the network.
Abstract: Wireless sensor networks will be widely deployed in the near future. While much research has focused on making these networks feasible and useful, security has received little attention. We present a suite of security protocols optimized for sensor networks: SPINS. SPINS has two secure building blocks: SNEP and μTESLA. SNEP includes: data confidentiality, two-party data authentication, and evidence of data freshness. μTESLA provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

2,298 citations


Proceedings ArticleDOI
01 Oct 2002
TL;DR: The goal is to use the least energy, storage, and other resources necessary to maintain a reliable system with a very high `data homing' success rate and it is believed that the domain-centric protocols and energy tradeoffs presented here for ZebraNet will have general applicability in other wireless and sensor applications.
Abstract: Over the past decade, mobile computing and wireless communication have become increasingly important drivers of many new computing applications. The field of wireless sensor networks particularly focuses on applications involving autonomous use of compute, sensing, and wireless communication devices for both scientific and commercial purposes. This paper examines the research decisions and design tradeoffs that arise when applying wireless peer-to-peer networking techniques in a mobile sensor network designed to support wildlife tracking for biology research.The ZebraNet system includes custom tracking collars (nodes) carried by animals under study across a large, wild area; the collars operate as a peer-to-peer network to deliver logged data back to researchers. The collars include global positioning system (GPS), Flash memory, wireless transceivers, and a small CPU; essentially each node is a small, wireless computing device. Since there is no cellular service or broadcast communication covering the region where animals are studied, ad hoc, peer-to-peer routing is needed. Although numerous ad hoc protocols exist, additional challenges arise because the researchers themselves are mobile and thus there is no fixed base station towards which to aim data. Overall, our goal is to use the least energy, storage, and other resources necessary to maintain a reliable system with a very high `data homing' success rate. We plan to deploy a 30-node ZebraNet system at the Mpala Research Centre in central Kenya. More broadly, we believe that the domain-centric protocols and energy tradeoffs presented here for ZebraNet will have general applicability in other wireless and sensor applications.

2,128 citations


Journal ArticleDOI
TL;DR: This article presents a suite of techniques that perform aggressive energy optimization while targeting all stages of sensor network design, from individual nodes to the entire network.
Abstract: This article describes architectural and algorithmic approaches that designers can use to enhance the energy awareness of wireless sensor networks. The article starts off with an analysis of the power consumption characteristics of typical sensor node architectures and identifies the various factors that affect system lifetime. We then present a suite of techniques that perform aggressive energy optimization while targeting all stages of sensor network design, from individual nodes to the entire network. Maximizing network lifetime requires the use of a well-structured design methodology, which enables energy-aware design and operation of all aspects of the sensor network, from the underlying hardware platform to the application software and network protocols. Adopting such a holistic approach ensures that energy awareness is incorporated not only into individual sensor nodes but also into groups of communicating nodes and the entire sensor network. By following an energy-aware design methodology based on techniques such as in this article, designers can enhance network lifetime by orders of magnitude.

1,820 citations


Proceedings ArticleDOI
02 Jul 2002
TL;DR: This paper model data-centric routing and compare its performance with traditional end-to-end routing schemes, and examines the complexity of optimal data aggregation, showing that although it is an NP-hard problem in general, there exist useful polynomial-time special cases.
Abstract: Sensor networks are distributed event-based systems that differ from traditional communication networks in several ways: sensor networks have severe energy constraints, redundant low-rate data, and many-to-one flows. Data-centric mechanisms that perform in-network aggregation of data are needed in this setting for energy-efficient information flow. In this paper we model data-centric routing and compare its performance with traditional end-to-end routing schemes. We examine the impact of source-destination placement and communication network density on the energy costs and delay associated with data aggregation. We show that data-centric routing offers significant performance gains across a wide range of operational scenarios. We also examine the complexity of optimal data aggregation, showing that although it is an NP-hard problem in general, there exist useful polynomial-time special cases.

1,536 citations


01 Jan 2002
TL;DR: The proposed Geographic and Energy Aware Routing (GEAR) algorithm uses energy aware neighbor selection to route a packet towards the target region and Recursive Geographic Forwarding or Restricted flooding algorithm to disseminate the packet inside the destina-
Abstract: Future sensor networks will be composed of a large number of densely deployed sensors/actuators. A key feature of such networks is that their nodes are untethered and unattended. Consequently, energy efficiency is an important design consideration for these networks. Motivated by the fact that sensor network queries may often be geographical, we design and evaluate an energy efficient routing algorithm that propagates a query to the appropriate geographical region, without flooding. The proposed Geographic and Energy Aware Routing (GEAR) algorithm uses energy aware neighbor selection to route a packet towards the target region and Recursive Geographic Forwarding or Restricted Flooding algorithm to disseminate the packet inside the destina-

1,503 citations


Journal ArticleDOI
01 Sep 2002
TL;DR: This paper introduces the Cougar approach to tasking sensor networks through declarative queries, and proposes a natural architecture for a data management system for sensor networks, and describes open research problems in this area.
Abstract: The widespread distribution and availability of small-scale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as temperature, light, or seismic sensors with networking and computation capabilities. Applications range from environmental control, warehouse inventory, and health care to military environments. Existing sensor networks assume that the sensors are preprogrammed and send data to a central frontend where the data is aggregated and stored for offline querying and analysis. This approach has two major drawbacks. First, the user cannot change the behavior of the system on the fly. Second, conservation of battery power is a major design factor, but a central system cannot make use of in-network programming, which trades costly communication for cheap local computation.In this paper, we introduce the Cougar approach to tasking sensor networks through declarative queries. Given a user query, a query optimizer generates an efficient query plan for in-network query processing, which can vastly reduce resource usage and thus extend the lifetime of a sensor network. In addition, since queries are asked in a declarative language, the user is shielded from the physical characteristics of the network. We give a short overview of sensor networks, propose a natural architecture for a data management system for sensor networks, and describe open research problems in this area.

Proceedings ArticleDOI
15 Apr 2002
TL;DR: This paper proposes a hybrid routing protocol (APTEEN) which allows for comprehensive information retrieval and observes that these protocols are observed to outperform existing protocols in terms of energy consumption and longevity of the network.
Abstract: Wireless sensor networks with thousands of tiny sensor nodes, are expected to find wide applicability and increasing deployment in coming years, as they enable reliable monitoring and analysis of the environment. In this paper, we propose a hybrid routing protocol (APTEEN) which allows for comprehensive information retrieval. The nodes in such a network not only react to time-critical situations, but also give an overall picture of the network at periodic intervals in a very energy efficient manner. Such a network enables the user to request past, present and future data from the network in the form of historical, one-time and persistent queries respectively. We evaluated the performance of these protocols and observe that these protocols are observed to outperform existing protocols in terms of energy consumption and longevity of the network.

Book ChapterDOI
01 Jan 2002
TL;DR: This paper presents a potential-field-based approach to deployment of a mobile sensor network, where the fields are constructed such that each node is repelled by both obstacles and by other nodes, thereby forcing the network to spread itself throughout the environment.
Abstract: This paper considers the problem of deploying a mobile sensor network in an unknown environment. A mobile sensor network is composed of a distributed collection of nodes, each of which has sensing, computation, communication and locomotion capabilities. Such networks are capable of self-deployment; i.e., starting from some compact initial configuration, the nodes in the network can spread out such that the area ‘covered’ by the network is maximized. In this paper, we present a potential-field-based approach to deployment. The fields are constructed such that each node is repelled by both obstacles and by other nodes, thereby forcing the network to spread itself throughout the environment. The approach is both distributed and scalable.

Journal ArticleDOI
TL;DR: A family of adaptive protocols that efficiently disseminate information among sensors in an energy-constrained wireless sensor network, called SPIN (Sensor Protocols for Information via Negotiation), that perform close to the theoretical optimum in both point-to-point and broadcast networks.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminate information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of four specific SPIN protocols: SPIN-PP and SPIN-EC, which are optimized for a point-to-point network, and SPIN-BC and SPIN-RL, which are optimized for a broadcast network. Comparing the SPIN protocols to other possible approaches, we find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches in a point-to-point network and 80% more data for a given amount of energy in a broadcast network. We also find that, in terms of dissemination rate and energy usage, the SPIN protocols perform close to the theoretical optimum in both point-to-point and broadcast networks.

Proceedings ArticleDOI
28 Sep 2002
TL;DR: A node-scheduling scheme, which can reduce system overall energy consumption, therefore increasing system lifetime, by turning off some redundant nodes, and guarantees that the original sensing coverage is maintained after turning off redundant nodes.
Abstract: In wireless sensor networks that consist of a large number of low-power, short-lived, unreliable sensors, one of the main design challenges is to obtain long system lifetime, as well as maintain sufficient sensing coverage and reliability. In this paper, we propose a node-scheduling scheme, which can reduce system overall energy consumption, therefore increasing system lifetime, by turning off some redundant nodes. Our coverage-based off-duty eligibility rule and backoff-based node-scheduling scheme guarantees that the original sensing coverage is maintained after turning off redundant nodes. We implement our proposed scheme in NS-2 as an extension of the LEACH protocol. We compare the energy consumption of LEACH with and without the extension and analyze the effectiveness of our scheme in terms of energy saving. Simulation results show that our scheme can preserve the system coverage to the maximum extent. In addition, after the node-scheduling scheme turns off some nodes, certain redundancy is still guaranteed, which we believe can provide enough sensing reliability in many applications.

Proceedings ArticleDOI
23 Sep 2002
TL;DR: This paper describes TTDD, a Two-Tier Data Dissemination approach that provides scalable and efficient data delivery to multiple mobile sinks and evaluates TTDD performance through both analysis and extensive simulation experiments.
Abstract: Sink mobility brings new challenges to large-scale sensor networking. It suggests that information about each mobile sink's location be continuously propagated through the sensor field to keep all sensor nodes updated with the direction of forwarding future data reports. Unfortunately frequent location updates from multiple sinks can lead to both excessive drain of sensors' limited battery power supply and increased collisions in wireless transmissions. In this paper we describe TTDD, a Two-Tier Data Dissemination approach that provides scalable and efficient data delivery to multiple mobile sinks. Each data source in TTDD proactively builds a grid structure which enables mobile sinks to continuously receive data on the move by flooding queries within a local cell only. TTDD's design exploits the fact that sensor nodes are stationary and location-aware to construct and maintain the grid structures with low overhead. We have evaluated TTDD performance through both analysis and extensive simulation experiments. Our results show that TTDD handles multiple mobile sinks efficiently with performance comparable with that of stationary sinks.

Journal ArticleDOI
TL;DR: This taxonomy will aid in defining appropriate communication infrastructures for different sensor network application sub-spaces, allowing network designers to choose the protocol architecture that best matches the goals of their application.
Abstract: In future smart environments, wireless sensor networks will play a key role in sensing, collecting, and disseminating information about environmental phenomena. Sensing applications represent a new paradigm for network operation, one that has different goals from more traditional wireless networks. This paper examines this emerging field to classify wireless micro-sensor networks according to different communication functions, data delivery models, and network dynamics. This taxonomy will aid in defining appropriate communication infrastructures for different sensor network application sub-spaces, allowing network designers to choose the protocol architecture that best matches the goals of their application. In addition, this taxonomy will enable new sensor network models to be defined for use in further research in this area.

Journal ArticleDOI
TL;DR: This article addresses basic issues regarding the design and development of wireless access and wireless LAN systems that will operate in the 60 GHz band as part of the fourth-generation (4G) system and discusses a number of key research topics.
Abstract: This article addresses basic issues regarding the design and development of wireless access and wireless LAN systems that will operate in the 60 GHz band as part of the fourth-generation (4G) system. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space (5 GHz) has been allocated worldwide for dense wireless local communications. The article gives an overview of 60 GHz channel characteristics and puts them in their true perspective. In addition, we discuss how to achieve the exploitation of the abundant bandwidth resource for all kinds of short-range communications. The main tenor is that an overall system architecture should be worked out that provides industry with plenty of scope for product differentiation. This architecture should feature affordability, scalability, modularity, extendibility, and interoperability. In addition, user convenience and easy and efficient network deployment are important prerequisites for market success. This article discusses these features and indicates a number of key research topics.

Proceedings ArticleDOI
09 Jun 2002
TL;DR: This paper derives an analytical expression that enables the determination of the required range r0 that creates, for a given node density ρ, an almost surely k--connected network and investigates two fundamental characteristics of a wireless multi -hop network: its minimum node degree and its k--connectivity.
Abstract: This paper investigates two fundamental characteristics of a wireless multi -hop network: its minimum node degree and its k--connectivity Both topology attributes depend on the spatial distribution of the nodes and their transmission range Using typical modeling assumptions :--- :a random uniform distribution of the nodes and a simple link model :--- :we derive an analytical expression that enables the determination of the required range r0 that creates, for a given node density ρ, an almost surely k--connected network Equivalently, if the maximum r0 of the nodes is given, we can find out how many nodes are needed to cover a certain area with a k--connected network We also investigate these questions by various simulations and thereby verify our analytical expressions Finally, the impact of mobility is discussedThe results of this paper are of practical value for researchers in this area, eg, if they set the parameters in a network--level simulation of a mobile ad hoc network or if they design a wireless sensor network

Journal ArticleDOI
TL;DR: The key ideas behind the CSP algorithms for distributed sensor networks being developed at the University of Wisconsin (UW) are described and the approach to tracking multiple targets that necessarily requires classification techniques becomes a reality.
Abstract: Networks of small, densely distributed wireless sensor nodes are being envisioned and developed for a variety of applications involving monitoring and the physical world in a tetherless fashion. Typically, each individual node can sense in multiple modalities but has limited communication and computation capabilities. Many challenges must be overcome before the concept of sensor networks In particular, there are two critical problems underlying successful operation of sensor networks: (1) efficient methods for exchanging information between the nodes and (2) collaborative signal processing (CSP) between the nodes to gather useful information about the physical world. This article describes the key ideas behind the CSP algorithms for distributed sensor networks being developed at the University of Wisconsin (UW). We also describe the basic ideas on how the CSP algorithms interface with the networking/routing algorithms being developed at Wisconsin (UW-API). We motivate the framework via the problem of detecting and tracking a single maneuvering target. This example illustrates the essential ideas behind the integration between UW-API and UW-CSP algorithms and also highlights the key aspects of detection and localization algorithms. We then build on these ideas to present our approach to tracking multiple targets that necessarily requires classification techniques becomes a reality.

Proceedings Article
10 Jun 2002
TL;DR: A distributed algorithm for determining the positions of nodes in an ad-hoc, wireless sensor network is explained in detail and shows that, given an average connectivity of at least 12 nodes and 10% anchors, the algorithm performs well with up to 40% errors in distance measurements.
Abstract: A distributed algorithm for determining the positions of nodes in an ad-hoc, wireless sensor network is explained in detail. Details regarding the implementation of such an algorithm are also discussed. Experimentation is performed on networks containing 400 nodes randomly placed within a square area, and resulting error magnitudes are represented as percentages of each node’s radio range. In scenarios with 5% errors in distance measurements, 5% anchor node population (nodes with known locations), and average connectivity levels between neighbors of 7 nodes, the algorithm is shown to have errors less than 33% on average. It is also shown that, given an average connectivity of at least 12 nodes and 10% anchors, the algorithm performs well with up to 40% errors in distance measurements.

Journal ArticleDOI
01 Jan 2002
TL;DR: The ASCENT algorithm is motivated and described and it is shown that the system achieves linear increase in energy savings as a function of the density and the convergence time required in case of node failures while still providing adequate connectivity.
Abstract: Advances in microsensor and radio technology enable small but smart sensors to be deployed for a wide range of environmental monitoring applications. The low-per node cost allows these wireless networks of sensors and actuators to be densely distributed. The nodes in these dense networks coordinate to perform the distributed sensing and actuation tasks. Moreover, as described in this paper, the nodes can also coordinate to exploit the redundancy provided by high density so as to extend overall system lifetime. The large number of nodes deployed in this systems preclude manual configuration, and the environmental dynamics precludes design-time preconfiguration. Therefore, nodes have to self-configure to establish a topology that provides communication under stringent energy constraints. ASCENT builds on the notion that, as density increases, only a subset of the nodes is necessary to establish a routing forwarding backbone. In ASCENT, each node assesses its connectivity and adapts its participation in the multihop network topology based on the measured operating region. This paper motivates and describes the ASCENT algorithm and presents analysis, simulation, and experimental measurements. We show that the system achieves linear increase in energy savings as a function of the density and the convergence time required in case of node failures while still providing adequate connectivity.

Journal ArticleDOI
Feng Zhao1, Jaewon Shin1, James E. Reich1
TL;DR: The main idea is for a network to determine participants in a "sensor collaboration" by dynamically optimizing the information utility of data for a given cost of communication and computation.
Abstract: This article overviews the information-driven approach to sensor collaboration in ad hoc sensor networks. The main idea is for a network to determine participants in a "sensor collaboration" by dynamically optimizing the information utility of data for a given cost of communication and computation. A definition of information utility is introduced, and several approximate measures of the information utility are developed for reasons of computational tractability. We illustrate the use of this approach using examples drawn from tracking applications.

Proceedings ArticleDOI
28 Sep 2002
TL;DR: The collaborative multilateration presented here, enables ad-hoc deployed sensor nodes to accurately estimate their locations by using known beacon locations that are several hops away and distance measurements to neighboring nodes to prevent error accumulation in the network.
Abstract: The recent advances in MEMS, embedded systems and wireless communication technologies are making the realization and deployment of networked wireless microsensors a tangible task. Vital to the success of wireless microsensor networks is the ability of microsensors to ``collectively perform sensing and computation''. In this paper, we study one of the fundamental challenges in sensor networks, node localization. The collaborative multilateration presented here, enables ad-hoc deployed sensor nodes to accurately estimate their locations by using known beacon locations that are several hops away and distance measurements to neighboring nodes. To prevent error accumulation in the network, node locations are computed by setting up and solving a global non-linear optimization problem. The solution is presented in two computation models, centralized and a fully distributed approximation of the centralized model. Our simulation results show that using the fully distributed model, resource constrained sensor nodes can collectively solve a large non-linear optimization problem that none of the nodes can solve individually. This approach results in significant savings in computation and communication, that allows fine-grained localization to run on a low cost sensor node we have developed.

Proceedings ArticleDOI
02 Jul 2002
TL;DR: The preliminary results suggest that, under investigated scenarios, greedy aggregation can achieve up to 45% energy savings over opportunistic aggregation in high-density networks without adversely impacting latency or robustness.
Abstract: In-network data aggregation is essential for wireless sensor networks where energy resources are limited. In a previously proposed data dissemination scheme (directed diffusion with opportunistic aggregation), data is opportunistically aggregated at intermediate nodes on a low-latency tree. In this paper, we explore and evaluate greedy aggregation, a novel approach that adjusts aggregation points to increase the amount of path sharing, reducing energy consumption. Our preliminary results suggest that, under investigated scenarios, greedy aggregation can achieve up to 45% energy savings over opportunistic aggregation in high-density networks without adversely impacting latency or robustness.

Proceedings ArticleDOI
28 Sep 2002
TL;DR: It is shown through simulation and experimentation that PSFQ can out perform existing related techniques and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.
Abstract: We propose PSFQ (Pump Slowly, Fetch Quickly), a reliable transport protocol suitable for a new class of reliable data applications emerging in wireless sensor networks. For example, currently sensor networks tend to be application specific and are typically hard-wired to perform a specific task efficiently at low cost; however, there is an emerging need to be able to re-task or reprogram groups of sensors in wireless sensor networks on the fly (e.g., during disaster recovery). Due to the application-specific nature of sensor networks, it is difficult to design a single monolithic transport system that can be optimized for every application. PSFQ takes a different approach and supports a simple, robust and scalable transport that is customizable to meet the needs of different reliable data applications. To our knowledge there has been little or no work on the design of an efficient reliable transport protocol for wireless sensor networks, even though some techniques found in IP networks have some relevance to the solution space, such as, the body of work on reliable multicast. We present the design and implementation of PSFQ, and evaluate the protocol using the ns-2 simulator and an experimental wireless sensor testbed based on Berkeley motes. We show through simulation and experimentation that PSFQ can out perform existing related techniques (e.g., an idealized SRM scheme) and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.

Journal ArticleDOI
TL;DR: This work proposes a new technique, called sparse topology and energy management (STEM), which efficiently wakes up nodes from a deep sleep state without the need for an ultra low-power radio, and shows that this scheme results in energy savings of over two orders of magnitude compared to sensor networks without topology management.
Abstract: In wireless sensor networks, energy efficiency is crucial to achieving satisfactory network lifetime. To reduce the energy consumption significantly, a node should turn off its radio most of the time, except when it has to participate in data forwarding. We propose a new technique, called sparse topology and energy management (STEM), which efficiently wakes up nodes from a deep sleep state without the need for an ultra low-power radio. The designer can trade the energy efficiency of this sleep state for the latency associated with waking up the node. In addition, we integrate STEM with approaches that also leverage excess network density. We show that our hybrid wakeup scheme results in energy savings of over two orders of magnitude compared to sensor networks without topology management. Furthermore, the network designer is offered full flexibility in exploiting the energy-latency-density design space by selecting the appropriate parameter settings of our protocol.

Proceedings ArticleDOI
07 Nov 2002
TL;DR: The fundamental limits of energy-efficient collaborative data-gathering are explored by deriving upper bounds on the lifetime of increasingly sophisticated sensor networks.
Abstract: A key challenge in ad-hoc, data-gathering, wireless sensor networks is achieving a lifetime of several years using nodes that carry merely hundreds of joules of stored energy. We explore the fundamental limits of energy-efficient collaborative data-gathering by deriving upper bounds on the lifetime of increasingly sophisticated sensor networks.

Proceedings ArticleDOI
25 Sep 2002
TL;DR: RAP is presented, a new real-time communication architecture for large-scale sensor networks that provides convenient, high-level query and event services for distributed micro-sensing applications and significantly reduces the end-to-end deadline miss ratio in the sensor network.
Abstract: Large-scale wireless sensor networks represent a new generation of real-time embedded systems with significantly different communication constraints from traditional networked systems. This paper presents RAP, a new real-time communication architecture for large-scale sensor networks. RAP provides convenient, high-level query and event services for distributed micro-sensing applications. Novel location-addressed communication models are supported by a scalable and light-weight network stack. We present and evaluate a new packet scheduling policy called velocity monotonic scheduling that inherently accounts for both time and distance constraints. We show that this policy is particularly suitable for communication scheduling in sensor networks in which a large number of wireless devices are seamlessly integrated into a physical space to perform real-time monitoring and control. Detailed simulations of representative sensor network environments demonstrate that RAP significantly reduces the end-to-end deadline miss ratio in the sensor network.

Proceedings ArticleDOI
11 Oct 2002
TL;DR: This work presents a novel approach for energy-aware and context-aware routing of sensor data that calls for network clustering and assigns a less-energy-constrained gateway node that acts as a centralized network manager.
Abstract: There has been a growing interest in the applications of sensor networks. Since sensors are generally constrained in on-board energy supply, efficient management of the network is crucial in extending the life of the sensor. We present a novel approach for energy-aware and context-aware routing of sensor data. The approach calls for network clustering and assigns a less-energy-constrained gateway node that acts as a centralized network manager. Based on energy usage at every sensor node and changes in the mission and the environment, the gateway sets routes for sensor data, monitors latency throughout the cluster, and arbitrates medium access among sensors. Simulation results demonstrate that our approach can achieve substantial energy saving.