scispace - formally typeset
Search or ask a question
Topic

Keying

About: Keying is a research topic. Over the lifetime, 6598 publications have been published within this topic receiving 82943 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive treatment applicable to a wide variety of coherent receiver designs under a broad range of conditions is provided and models and analytical tools are developed in sufficient detail to encompass a wide range of applications.
Abstract: The chief objective of this paper is to develop a fundamental understanding of the effects of laser phase noise on the performance of coherent lightwave communication systems. A comprehensive treatment applicable to a wide variety of coherent receiver designs under a broad range of conditions is provided. Our models and analytical tools are developed in sufficient detail to encompass a broad range of applications. Formulas are derived for the bit error rate in homodyne and heterodyne Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), Frequency Shift Keying (FSK) and on-off keying. Estimates are provided of the penalties accrued due to phase noise. Based on detailed mathematical analysis and estimates, we made several findings. Near quantum-limited receiver sensitivity can be achieved with PSK using homodyne detection only at signaling rates 3000 times greater than the laser linewidth. A receiver sensitivity 3 to 6 decibels poorer than the quantum limit can be achieved with heterodyne rather than homodyne detection. DPSK, for example, can operate at rates only 300 times greater than the laser linewidth. At lower rates, FSK is an attractive candidate. It can be designed to be extremely tolerant of phase noise by using wide frequency deviations.

174 citations

Journal ArticleDOI
TL;DR: The purpose of this paper is to study and compare the bit-error-rate (BER) performance of several widely used modulation formats under different atmospheric turbulence scenarios with and without SDRT, and derives a series-form formula for evaluating the BER performance of the DPSK format in the Gamma-Gamma distributed channel with SDRt.
Abstract: The transmission performance of a free-space optical (FSO) link could be severely degraded due to atmospheric turbulence, which causes the temporal and spatial fluctuation of light intensity. Both the space diversity reception technique (SDRT) and advanced modulation formats can successfully mitigate the transmission impairments of the atmospheric turbulence. The purpose of this paper is to study and compare the bit-error-rate (BER) performance of several widely used modulation formats under different atmospheric turbulence scenarios with and without SDRT. The modulation formats studied in this paper include on-off keying (OOK), differential phase-shift keying (DPSK), and differential quadrature phase-shift keying (DQPSK). We derive a series-form formula for evaluating the BER performance of the DPSK format in the Gamma-Gamma distributed channel with SDRT. We use both theoretical analysis and simulation to examine the BER performance of OOK, DPSK, and DQPSK formats with and without SDRT. It is found that, in the strongly turbulent scenario, the OOK and DPSK formats can have as large as 19.5 and 20.3 dB of SDRT gains at the BER of 10-3, respectively. Using SDRT, the modulation gains of the DPSK format over the OOK format are 3.2 dB in the strongly turbulent scenario and 4.5 dB in the weakly turbulent scenario, respectively. In addition, in the moderately and strongly turbulent scenarios, it is found that the DPSK and DQPSK formats have almost the same BER performance under the same symbol rate.

173 citations

Journal ArticleDOI
TL;DR: It is shown that the baseband signal of the modulator, the P_{e} = f(E_{b}/N_{0}) performance, and the spectral characteristics of nonlinearly amplified (hard-limited or saturated) radio systems of XPSK and tamed frequency modems (TFM) are practically the same.
Abstract: A new modulation technique, cross-correlated phase-shift keying ( XPSK ), is introduced. XPSK is a band-limited offset QPSK modulation technique which has an almost constant envelope. In XPSK modulators, a controlled amount of cross correlation between the in-phase ( I ) and quadrature ( Q ) channels is introduced. I and Q cross correlation reduce the envelope fluctuation Of the intersymbol-interference and jitter-free OQPSK (IJF-OQPSK) modulation scheme, introduced by Feher et al. [1], [2], from 3 dB to approximately 0 dB, thus further improving the performance of IJF-OQPSK systems in nonlinear radio systems [7], [14]. It is shown that the baseband signal of the modulator, the P_{e} = f(E_{b}/N_{0}) performance, and the spectral characteristics of nonlinearly amplified (hard-limited or saturated) radio systems of XPSK and tamed frequency modems (TFM) are practically the same. The XPSK demodulator is a conventional OQPSK demodulator, the TFM demodulator requires a somewhat more complex signal processor. For this reason, the XPSK approach may lead to significant demodulator hardware cost savings, particularly in point-to-multipoint distribution systems such as broadcast systems. Simulation results for linear and nonlinear (saturated amplifier) systems operated in an adjacent-channel interference environment (in addition to thermal noise) are presented. Measurement results performed on a 128 kbit/s rate hardware-prototype modem are also reported. Experimental eye diagram and power spectrum density measurement results are in close agreement with the computer simulation results.

173 citations

Journal ArticleDOI
TL;DR: In this article, an analytical technique well suited to numerical analysis is presented for computing the average bit-error rate and outage probability of M-ary phase-shift keying (PSK) in the land-mobile satellite channel (LMSC) with micro-diversity reception.
Abstract: An analytical technique well suited to numerical analysis is presented for computing the average bit-error rate (BER) and outage probability of M-ary phase-shift keying (PSK) in the land-mobile satellite channel (LMSC) with microdiversity reception. Closed-form expressions are found for L-branch microdiversity using both selection diversity combining (SDC) and maximal ratio combining (MRC). These expressions are extended to include both M-ary coherent PSK (M-PSK) and differential PSK [M-differential PSK (DPSK)]. Following previous empirical studies, the LMSC is modeled as a weighted sum of Rice and Suzuki distributions. Numerical results are provided illustrating the achievable performance of both M-PSK and M-DPSK with diversity reception. Using measured channel parameters, the performance in various mobile environments for various satellite elevation angles is also found.

168 citations

Patent
Glenn Dr. Benson1
23 Mar 1998
TL;DR: In this paper, a computer system is provided having a protection mechanism for protecting the contents of a file, where the protection mechanism has at least one Viewer program, at least a challenge associated with the Viewer and the file, and at least an response with private keying material that it can access.
Abstract: A computer system is provided having a protection mechanism for protecting the contents of a file. The protection mechanism has at least one Viewer program, at least one challenge associated with the Viewer program and the file, and at least one response with private keying material that it can access. The challenge has no access to the private keying material. The response can prove that it has access to the private keying material by interacting with the challenge using an asymmetric cryptographic scheme. The challenge can instruct the Viewer program to avoid using some or all of the file's content unless the proof is successful.

167 citations


Network Information
Related Topics (5)
Transmission (telecommunications)
171.3K papers, 1.2M citations
85% related
Optical fiber
167K papers, 1.8M citations
84% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022286
2021170
2020238
2019301
2018291