scispace - formally typeset
Search or ask a question
Topic

Keying

About: Keying is a research topic. Over the lifetime, 6598 publications have been published within this topic receiving 82943 citations.


Papers
More filters
Patent
10 Apr 2006
TL;DR: In this article, a system for sharing secure keying information with a new device not of a secure wireless network was proposed, where the keying is used for encryption and provided to the new device in a manner which is not susceptible to exposure outside of the secure network.
Abstract: A system for sharing secure keying information with a new device not of a secure wireless network. The keying information may be used for encryption and provided to the new device in a manner which is not susceptible to exposure outside of the secure network. The keying information shared with the new device may be regarded as a birth key. Upon appropriate provision of the birth key, the new device may request with a birth key encrypted message via a communication mode exposed to potential adversaries to be added to the secure network.

54 citations

Journal ArticleDOI
TL;DR: The principles of the nonlinear signal–noise interaction (NSNI) in dispersion-managed long-haul optical links are highlighted and a quantitative understanding of the system parameters for which NSNI sets the non linear performance of the most popular intensity and phase modulation formats is provided.

54 citations

Patent
27 Jul 2007
TL;DR: In this article, a hierarchical relational deployment model (100) facilitates grouping wireless devices in a healthcare environment into subgroups based on relationships between the devices, and a hierarchical key pre-distribution scheme (110) permits distribution of unique keying material for security domains of respective groups of devices, prior to deploying the devices in healthcare network.
Abstract: A measurement device (14) includes a measuring unit (42) for obtaining health related parameters of a patient (12), and a body-coupled communication unit (40) for sending at least measurement results. An identification device (20), associated with the patient, includes a body-coupled communication unit (26) for receiving and sending out the measurement results. A gateway device (72) includes a body-coupled communication unit (78) for receiving patient's measurement results. Additionally, a hierarchical relational deployment model (100) facilitates grouping wireless devices in a healthcare environment into subgroups based on relationships between the devices, and a hierarchical key pre-distribution scheme (110) permits distribution of unique keying material for security domains of respective groups of devices, prior to deploying the devices in a healthcare network. Devices can then execute a handshake protocol by which they identify their deepest common node in the deployment model (100), and employ keying material assigned to that nodes group in the pre-distribution scheme (110) to facilitate granular communication security.

53 citations

Journal ArticleDOI
TL;DR: This work provides expressions for the bit error rate of various transmit and receive diversity schemes for orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency offset, phase noise, and channel estimation errors.
Abstract: We provide expressions for the bit error rate of various transmit and receive diversity schemes for orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency offset, phase noise, and channel estimation errors. The derivations are also applicable for a general multiplicative distortion of the received signal. Our results show that with perfect channel estimates, practical values of the phase noise do not significantly degrade the performance of the various diversity methods for binary phase-shift keying modulation. In contrast, the transmit diversity schemes for OFDM are much more sensitive to channel estimation errors than maximal ratio combining receive diversity.

53 citations

Journal ArticleDOI
T. Chen1, C.T. Swain2, B.G. Haskell2
TL;DR: A scheme for coding subregions in video scenes to provide content-based scalable video and a number of techniques that eliminate boundary artifacts common to region-based coding are presented.
Abstract: We propose a scheme for coding subregions in video scenes to provide content-based scalable video. For each region, a special color is used to represent the nonobject area, and the resulting frames are coded using conventional video coding algorithms. At the decoder, the region shape is recovered based on chroma keying, and hence, content-based manipulations are made possible. A number of techniques that eliminate boundary artifacts common to region-based coding are presented. In this scheme, no explicit shape coding is needed, and advantages of existing coding algorithms are retained. This scheme was submitted to ISO MPEG-4 and performed very well in the subjective tests.

53 citations


Network Information
Related Topics (5)
Transmission (telecommunications)
171.3K papers, 1.2M citations
85% related
Optical fiber
167K papers, 1.8M citations
84% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022286
2021170
2020238
2019301
2018291