scispace - formally typeset
Search or ask a question
Topic

Kidney metabolism

About: Kidney metabolism is a research topic. Over the lifetime, 14887 publications have been published within this topic receiving 792008 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the physiologic, endocrinologic, and molecular biologic characteristics of vitamin D is provided and information on new selective analogs of 1alpha,25-dihydroyvitamin D3 for therapy is provided.

2,092 citations

Journal ArticleDOI
TL;DR: The findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate, which highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions.
Abstract: Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1) This difference raises questions about their origin Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources A small number of FSP1(+), CD34(-) fibroblasts migrate to normal interstitial spaces from bone marrow More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions

1,929 citations

Journal ArticleDOI
TL;DR: PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway, suggesting loss or dysfunction of PC1 or PC2 may lead to polycystic kidney disease.
Abstract: Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.

1,920 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.
Abstract: Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4(-/-) mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4(-/-) mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.

1,875 citations

Journal ArticleDOI
29 Sep 2000-Science
TL;DR: It is shown that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene Expression in liver, kidney, and heart, however, dexamETHasone does not affect cyclic geneexpression in neurons of the suprachiasmatic nucleus.
Abstract: In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.

1,650 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
84% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Inflammation
76.4K papers, 4M citations
81% related
Insulin
124.2K papers, 5.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202164
2020183
2019265
2018287
2017333
2016387