Topic
Kinetin
About: Kinetin is a(n) research topic. Over the lifetime, 7856 publication(s) have been published within this topic receiving 135550 citation(s). The topic is also known as: Kinetin.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots, andIndole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan, and combinations of these substances produced changes in root morphology of pearl millet similar to those produced by inoculated plants.
Abstract: Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense. Images
930 citations
[...]
TL;DR: It is concluded that growing shoots are relatively insensitive to correlative inhibition because they synthesize two types of growth substances, namely, auxin, which antagonizes the inhibitory effect on internodal elongation, and cytokinins, which permit the apex itself to develop.
Abstract: The paper deals with the general problem of the physiological basis of branching, and the roles of known and unexplored factors in sensitivity to apical domirnance. It is shown that when pea seedling shoots are completely or partially inhibited by other shoots on the same plant auxin can promote their elongation, even though it does not have this effect on inhibited buds. This influence of auxin is only exerted on internodal elongation and not on apical growth. When kinetin in a solution of alcohol and carbowax is applied directly to the lateral buds of pea seedlings, it releases them from inhibition by the growing apex. It is shown that the role of alcohol in this solution is to act as a surfactant, permitting good contact with the buds, while that of carbowax, being hygroscopic, is to maintain a thin film of solution over the buds. Buds thus released from apical dominance by kinetin do not elongate as much as do uninhibited control buds. Such kinetintreated buds can, however, be made to elongate normally by the application of auxin locally to their apices. It is concluded that growing shoots are relatively insensitive to correlative inhibition because they synthesize two types of growth substances, namely, auxin, which antagonizes the inhibitory effect on internodal elongation, and cytokinins, which permit the apex itself to develop. In the discussion it is brought out that many cases of branching, which appear at first to bear little relation to one another, can be understood on the basis of two principles, namely: (1) Any reduction in the growth rate of a dominant apex reduces its inhibitory effect on other apices, and (2) once an apex starts growing it becomes less sensitive to inhibition by other apices These generalizations and the experimental results are tentatively interpreted in terms of an interaction between the syntheses of auxin and of cytokinin.
388 citations