scispace - formally typeset
Search or ask a question
Topic

Kinetin

About: Kinetin is a research topic. Over the lifetime, 7856 publications have been published within this topic receiving 135550 citations. The topic is also known as: Kinetin.


Papers
More filters
Book ChapterDOI
01 Jan 2010
TL;DR: These studies demonstrated that natural plant cytokinin species are adenines which have substituted at the N6 terminal either an isoprene-derived side chain (isoprenoid cytokinins), or an aromatic derivative side chain(s) (aromatic cytokerins).
Abstract: Since the discovery of cytokinins in the 1950s, it has been clearly established that they play an important role in various processes in the growth and development of plants, including the promotion of cell division, the counteraction of senescence, the regulation of apical dominance and the transmission of nutritional signals. Kinetin (Fig. 1a) was the first substance to be identified as a cytokinin, and although it was isolated from autoclaved herring sperm DNA (34) it is not naturally produced and has not been found in living plants. The naturally occurring cytokinin trans-zeatin (tZ, Fig. 1b) was first isolated from immature maize endosperm in the early 1960s (26). In the following 40 years, several cytokinin species have been identified from various plant species (35, 43). These studies demonstrated that natural plant cytokinins are adenines which have substituted at the N6 terminal either an isoprene-derived side chain (isoprenoid cytokinins), or an aromatic derivative side chain (aromatic cytokinins).

54 citations

Journal ArticleDOI
TL;DR: The cytokinin-like activity of the growth regulating chemical EDU, N-[2-oxo-1-imidazolidinyl)ethyl]-N′-phenylurea, was determined and compared with the actitivity of kinetin using the tobacco callus bioassay as discussed by the authors.
Abstract: The cytokinin-like activity of the growth regulating chemical EDU, N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N′-phenylurea, was determined and compared with the actitivity of kinetin using the tobacco callus bioassay. EDU has a pronounced stimulatory effect on callus growth at concentrations of 5 × 10−4 and 1 × 10−3M but was 5 000 times less potent than the synthetic cytokinin, kinetin. Senescence regulation and oxidant resistance induced by EDU and kinetin were also studied. EDU retarded the breakdown of chlorophyll, protein and RNA in 03-sensitive tobacco leaf discs during senescence. EDU was much more effective in arresting senescence and in protecting against 03 injury than kinetin. Results indicate the EDU-induced plant tolerance to 03 phytotoxicity may be indirect through enzyme induction regulation.

54 citations

Journal ArticleDOI
TL;DR: Higher concentrations of proteins and enhanced activity of starch synthetase at low level of salinity suggest the salutary effect of Na+ in metabolic functions of plant cells and it is argued that salt tolerance limit can be extended upto certain level ofsalinity by pre-kinetin treatment in potato plants.
Abstract: Different potato cultivars were subjected to 10 −6M kinetin treatment prior to the transplantation in saline soils (pre-kinetin treatment) and to the plants already growing on the saline soils (post-kinetin treatment). The kinetine when applied before the exposure of plants to saline soils showed promotory effects on growth, tuberization and some biochemical parameters of potato at 0.5 % salinity. The degree of inhibition in number of tubers and yield was reduced at 1 % salinity due to pre-kinetin treatment. The level of proline, reducing sugars and sodium was increased in different plant parts to maintain the osmoregulation. However, kinetin did not play any specific role in reducing down the increase in proline content resulted due to salinity. The level of K+ was found to be higher at low salinity in all the cultivars of potato. Higher concentrations of proteins and enhanced activity of starch synthetase at low level of salinity suggest the salutary effect of Na+ in metabolic functions of plant cells. The nitrate reductase (NR) activity was appeared to be more sensitive than starch synthetase. This could possibly be due to the localization of the enzyme and the cellular concentration of toxic substances increased under stress. Total Glyoalkaloids (TGA) content was reduced at both the salinity levels irrespective of kinetin treatments. On the contrary Na+ content was increased in all the treatments of kinetin at both levels of salinity. During this study cvs. Red Lasoda, Patrones and Atom alue approved to be more tolerant as compare to rest of the cultivars tested. This could be a combined effect of genetic setup, amendments in saline soils and pre-kinetin treatments of plants exposed to various regimes of salinity. Furthermore it is argued that salt tolerance limit can be extended upto certain level of salinity by pre-kinetin treatment in potato plants.

54 citations

Journal ArticleDOI
TL;DR: Frequency of plant regeneration and number of regenerants dramatically increased with an optimal amount of copper (2 μM) in the MS medium and well-developed plantlets were transferred to the field where 100% survival and normal seed setting was noted.
Abstract: A highly efficient protocol for callus induction and plant regeneration in Sorghum bicolor was developed by varying the concentrations of copper (0.1, 0.3, 0.5, 0.7, 1, 1.5, 2.5 μM) in Murashige and Skoog (MS) medium. The mature embryos of Sorghum bicolor were cultured on MS medium containing 2,4-dichlorophenoxyacetic acid (9μM), kinetin (2.3 μM), and 3% (w/v) sucrose for embryogenic callus induction. Plant regeneration from this callus occurred on MS medium containing kinetin (9.2 μM) and indole-3-acetic acid (2.85 μM). A much greater response was noted on these media with higher levels of copper. Frequency of plant regeneration and number of regenerants dramatically increased with an optimal amount of copper (2 μM) in the MS medium. Rooting of the regenerated shoots readily occurred on half-strength MS medium supplemented with α-naphthaleneacetic acid (10.7 μM) and 3% (w/v) sucrose. Well-developed plantlets were transferred to the field where 100% survival and normal seed setting was noted.

54 citations

Journal ArticleDOI
TL;DR: An in vitro regeneration system for chickpea, where immature cotyledons were excised from developing embryos and cultured on B5 basal medium supplemented with 1.5% sucrose and various growth regulator combinations, may be useful for genetic transformation of Chickpea.
Abstract: For the purpose of developing an in vitro regeneration system for chickpea (Cicer arietinum L.), an important food legume, immature cotyledons approximately 5 mm long were excised from developing embryos and cultured on B5 basal medium supplemented with 1.5% sucrose and various growth regulator combinations. Only non-morphogenic callus was formed in response to concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), naphthaleneacetic acid (NAA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) previously reported to induce somatic embryogenesis on immature soybean cotyledons. However, 4.6, 13.7, and 45.6 μM zeatin induced formation of white, cotyledon-like structures (CLS) at the proximal end of immature cotyledons placed with adaxial surface facing the agar medium. No morphogenesis, or occasional formation of fused, deformed CLS, was observed when zeatin was replaced with kinetin or 6-benzyladenine, respectively. The highest response frequency, 64% of explants forming CLS, was induced by 13.7 μM zeatin plus 0.2 μM indole-acetic acid (IAA). Within 20–40 days culture on zeatin, shoots formed at the base of CLS on approximately 50% of CLS-bearing explants, and proliferated upon subsequent transfer to basal medium with 4.4 μM BA or 4.6 μM kinetin. This regeneration system may be useful for genetic transformation of chickpea.

54 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
90% related
Auxin
10.7K papers, 502.6K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Seedling
28.6K papers, 478.2K citations
84% related
Abscisic acid
12.8K papers, 587K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023115
2022243
2021139
2020137
2019156
2018189