Topic
Klebsiella oxytoca
About: Klebsiella oxytoca is a(n) research topic. Over the lifetime, 1330 publication(s) have been published within this topic receiving 34035 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: The frequency of selected antimicrobial resistance patterns among pathogens causing device-associated and procedure-associated healthcare-associated infections reported by hospitals in the National Healthcare Safety Network (NHSN) is described.
Abstract: Objective. To describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) reported to the National Healthcare Safety Network (NHSN) during 2009-2010. Methods. Central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical site infections were included. Pooled mean proportions of isolates interpreted as resistant (or, in some cases, nonsusceptible) to selected antimicrobial agents were calculated by type of HAI and compared to historical data. Results. Overall, 2,039 hospitals reported 1 or more HAIs; 1,749 (86%) were general acute care hospitals, and 1,143 (56%) had fewer than 200 beds. There were 69,475 HAIs and 81,139 pathogens reported. Eight pathogen groups accounted for about 80% of reported pathogens: Staphylococcus aureus (16%), Enterococcus spp. (14%), Escherichia coli (12%), coagulase-negative staphylococci (11%), Candida spp. (9%), Klebsiella pneumoniae (and Klebsiella oxytoca; 8%), Pseudomonas aeruginosa (8%), and Enterobacter spp. (5%). The percentage of resistance was similar to that reported in the previous 2-year period, with a slight decrease in the percentage of S. aureus resistant to oxacillins (MRSA). Nearly 20% of pathogens reported from all HAIs were the following multidrug-resistant phenotypes: MRSA (8.5%); vancomycin-resistant Enterococcus (3%); extended-spectrum cephalosporin-resistant K. pneumoniae and K. oxytoca (2%), E. coli (2%), and Enterobacter spp. (2%); and carbapenem-resistant P. aeruginosa (2%), K. pneumoniae/oxytoca (<1%), E, coli (<1%), and Enterobacter spp. (<1%). Among facilities reporting HAIs with 1 of the above gram-negative bacteria, 20%-40% reported at least 1 with the resistant phenotype. Conclusion. While the proportion of resistant isolates did not substantially change from that in the previous 2 years, multidrug-resistant gram-negative phenotypes were reported from a moderate proportion of facilities.
3,229 citations
TL;DR: The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry, but in the last two decades, numerous microorganisms have been engineered to selectively produce ethanol.
Abstract: The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of Gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review.
754 citations
TL;DR: The phylogenetic relationships of the type strains of 9 Klebsiella species and 20 species from 11 genera of the family Enterobacteriaceae were investigated by performing a comparative analysis of the sequences of the 16S rRNA and rpoB genes, and the division of the genus Klebsia into two genera and one genogroup was supported.
Abstract: The phylogenetic relationships of the type strains of 9 Klebsiella species and 20 species from 11 genera of the family Enterobacteriaceae were investigated by performing a comparative analysis of the sequences of the 16S rRNA and rpoB genes. The sequence data were phylogenetically analysed by the neighbourjoining and parsimony methods. The phylogenetic inference of the sequence comparison confirmed that the genus Klebsiella is heterogeneous and composed of species which form three clusters that also included members of other genera, including Enterobacter aerogenes, Erwinia clusters I and II and Tatumella. Cluster I contained the type strains of Klebsiella pneumoniae subsp. pneumoniae, Klebsiella pneumoniae subsp. rhinoscleromatis and Klebsiella pneumoniae subsp. ozaenae. Cluster II contained Klebsiella ornithinolytica, Klebsiella planticola, Klebsiella trevisanii and Klebsiella terrigena, organisms characterized by growth at 10 degrees C and utilization of L-sorbose as carbon source. Cluster III contained Klebsiella oxytoca. The data from the sequence analyses along with previously reported biochemical and DNA-DNA hybridization data support the division of the genus Klebsiella into two genera and one genogroup. The name Raoultella is proposed as a genus name for species of cluster II and emended definitions of Klebsiella species are proposed.
373 citations
TL;DR: The human gut could serve as a reservoir for dissemination of biofilm-forming isolates and harbored the genetic information for expression of curli fimbriae and cellulose since Citrobacter, Enterobacter, and Klebsiella spp.
Abstract: Citrobacter spp., Enterobacter spp., and Klebsiella spp. isolated from the human gut were investigated for the biosynthesis of cellulose and curli fimbriae (csg). While Citrobacter spp. produced curli fimbriae and cellulose and Enterobacter spp. produced cellulose with various temperature-regulatory programs, Klebsiella spp. did not show pronounced expression of those extracellular matrix components. Investigation of multicellular behavior in two Citrobacter species and Enterobacter sakazakii showed an extracellular matrix, cell clumping, pellicle formation, and biofilm formation associated with the expression of cellulose and curli fimbriae. In those three strains, the csgD-csgBA region and the cellulose synthase gene bcsA were conserved. PCR screening for the presence of csgD, csgA and bcsA revealed that besides Klebsiella pneumoniae and Klebsiella oxytoca, all species investigated harbored the genetic information for expression of curli fimbriae and cellulose. Since Citrobacter spp., Enterobacter spp., and Klebsiella spp. are frequently found to cause biofilm-related infections such as catheter-associated urinary tract infections, the human gut could serve as a reservoir for dissemination of biofilm-forming isolates.
355 citations
TL;DR: Glycerol-fermenting anaerobes were enriched with glycerol at low and high concentrations in order to obtain strains that produce 1,3-propanediol, and Enterobacterial strains of the genera Enterobacter, Klebsiella, and Citrobacter showed similar product patterns except for one group which formed limited amounts of ethanol, but no propanediol.
Abstract: Glycerol-fermenting anaerobes were enriched with glycerol at low and high concentrations in order to obtain strains that produce 1,3-propanediol. Six isolates were selected for more detailed characterization; four of them were identified as Citrobacter freundii, one as Klebsiella oxytoca and one as K. pneumoniae. The Citrobacter strains formed 1.3-propanediol and acetate and almost no by-products, while the Klebsiella strains produced varying amounts of ethanol in addition and accordingly less 1,3-propanediol. Enterobacterial strains of the genera Enterobacter, Klebsiella, and Citrobacter from culture collections showed similar product patterns except for one group which formed limited amounts of ethanol, but no propanediol. Seven strains were grown in pH-controlled batch cultures to determine the parameters necessary to evaluate their capacity for 1,3-propanediol production. K. pneumoniae DSM 2026 exhibited the highest final concentration (61 g/l) and the best productivity (1.7 g/l h) whereas C. freundii Zu and K2 achieved only 35 g/l and 1.4 g/l h, respectively. The Citrobacter strains on the other hand gave somewhat better yields which were very close to the theoretical optimum of 65 mol %.
280 citations