scispace - formally typeset
Search or ask a question
Topic

Kluyveromyces marxianus

About: Kluyveromyces marxianus is a research topic. Over the lifetime, 1828 publications have been published within this topic receiving 44555 citations.


Papers
More filters
Journal ArticleDOI
01 Jul 1992-Yeast
TL;DR: The effect of benzoate on respiration was dependent on the dilution rate: at high dilution rates respiration increased proportionally with increasing Benzoate concentration as mentioned in this paper.
Abstract: Addition of benzoate to the medium reservoir of glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 growing at a dilution rate (D) of 0.10 h-1 resulted in a decrease in the biomass yield, and an increase in the specific oxygen uptake rate (qO2) from 2.5 to as high as 19.5 mmol g-1 h-1. Above a critical concentration, the presence of benzoate led to alcoholic fermentation and a reduction in qO2 to 13 mmol g-1 h-1. The stimulatory effect of benzoate on respiration was dependent on the dilution rate: at high dilution rates respiration was not enhanced by benzoate. Cells could only gradually adapt to growth in the presence of benzoate: a pulse of benzoate given directly to the culture resulted in wash-out. As the presence of benzoate in cultures growing at low dilution rates resulted in large changes in the catabolic glucose flux, it was of interest to study the effect of benzoate on the residual glucose concentration in the fermenter as well as on the level of some selected enzymes. At D = 0.10 h-1, the residual glucose concentration increased proportionally with increasing benzoate concentration. This suggests that modulation of the glucose flux mainly occurs via a change in the extracellular glucose concentration rather than by synthesis of an additional amount of carriers. Also various intracellular enzyme levels were not positively correlated with the rate of respiration. A notable exception was citrate synthase: its level increased with increasing respiration rate. Growth of S. cerevisiae in ethanol-limited cultures in the presence of benzoate also led to very high qO2 levels of 19-21 mmol g-1 h-1. During growth on glucose as well as on ethanol, the presence of benzoate coincided with an increase in the mitochondrial volume up to one quarter of the total cellular volume. Also with the Crabtree-negative yeasts Candida utilis, Kluyveromyces marxianus and Hansenula polymorpha, growth in the presence of benzoate resulted in an increase in qO2 and, at high concentrations of benzoate, in aerobic fermentation. In contrast to S. cerevisiae, the highest qO2 of these yeasts when growing at D = 0.10 h-1 in the presence of benzoate was equal to, or lower than the qO2 attainable at mu(max) without benzoate. Enzyme activities that were repressed by glucose in S. cerevisiae also declined in K. marxianus when the glucose flux was increased by the presence of benzoate.(ABSTRACT TRUNCATED AT 400 WORDS)

1,444 citations

Journal ArticleDOI
TL;DR: Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels.
Abstract: Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was deomonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.

629 citations

Journal ArticleDOI
TL;DR: In this paper, a Lactobacillus plantarum strain (MiLAB 393) was isolated from grass silage that produces broad-spectrum antifungal compounds, active against food-and feed-borne filamentous fungi and yeasts in a dual-culture agar plate assay.
Abstract: We have isolated a Lactobacillus plantarum strain (MiLAB 393) from grass silage that produces broad-spectrum antifungal compounds, active against food- and feed-borne filamentous fungi and yeasts in a dual-culture agar plate assay. Fusarium sporotrichioides and Aspergillus fumigatus were the most sensitive among the molds, and Kluyveromyces marxianus was the most sensitive yeast species. No inhibitory activity could be detected against the mold Penicillium roqueforti or the yeast Zygosaccharomyces bailii. An isolation procedure, employing a microtiter well spore germination bioassay, was devised to isolate active compounds from culture filtrate. Cell-free supernatant was fractionated on a C18 SPE column, and the 95% aqueous acetonitrile fraction was further separated on a preparative HPLC C18 column. Fractions active in the bioassay were then fractionated on a porous graphitic carbon column. The structures of the antifungal compounds cyclo(l-Phe-l-Pro), cyclo(l-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid (l/d isomer ratio, 9:1), were determined by nuclear magnetic resonance spectroscopy, mass spectrometry, and gas chromatography. MIC values against A. fumigatus and P. roqueforti were 20 mg ml−1 for cyclo(l-Phe-l-Pro) and 7.5 mg ml−1 for phenyllactic acid. Combinations of the antifungal compounds revealed weak synergistic effects. The production of the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-Pro) by lactic acid bacteria is reported here for the first time.

607 citations

Journal ArticleDOI
TL;DR: In this article, the simultaneous saccharification and fermentation (SSF) process for ethanol production from various lignocellulosic woody (poplar and eucalyptus) and herbaceous ( Sorghum sp. bagasse, wheat straw and Brassica carinata residue) materials has been assayed using the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875.

501 citations

Journal ArticleDOI
TL;DR: The antifungal activity was stable during heat treatment and was retained even after autoclaving at 121°C for 15 min, and the activity was irreversibly lost after treatment with proteolytic enzymes (proteinase K, trypsin, and pepsin).
Abstract: The antifungal activity spectrum of Lactobacillus coryniformis subsp. coryniformis strain Si3 was investigated. The strain had strong inhibitory activity in dual-culture agar plate assays against the molds Aspergillus fumigatus, A. nidulans, Penicillium roqueforti, Mucor hiemalis, Talaromyces flavus, Fusarium poae, F. graminearum, F. culmorum, and F. sporotrichoides. A weaker activity was observed against the yeasts Debaryomyces hansenii, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The yeasts Rhodotorula glutinis, Sporobolomyces roseus, and Pichia anomala were not inhibited. In liquid culture the antifungal activity paralleled growth, with maximum mold inhibition early in the stationary growth phase, but with a rapid decline in antifungal activity after 48 h. The addition of ethanol to the growth medium prevented the decline and gave an increased antifungal activity. The activity was stable during heat treatment and was retained even after autoclaving at 121°C for 15 min. Maximum activity was observed at pH values of between 3.0 and 4.5, but it decreased rapidly when pH was adjusted to a level between 4.5 and 6.0 and was lost at higher pH values. The antifungal activity was fully regained after readjustment of the pH to the initial value (pH 3.6). The activity was irreversibly lost after treatment with proteolytic enzymes (proteinase K, trypsin, and pepsin). The antifungal activity was partially purified using ion-exchange chromatography and (NH4)2SO4 precipitation, followed by gel filtration chromatography. The active compound(s) was estimated to have a molecular mass of approximately 3 kDa. This is the first report of the production of a proteinaceous antifungal compound(s) from L. coryniformis subsp. coryniformis.

484 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
80% related
Lactic acid
25.2K papers, 499.1K citations
79% related
Anaerobic digestion
21.8K papers, 575K citations
78% related
Bacillus subtilis
19.6K papers, 539.4K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022121
202199
202082
201993
201892