scispace - formally typeset
Search or ask a question
Topic

Knowledge representation and reasoning

About: Knowledge representation and reasoning is a research topic. Over the lifetime, 20078 publications have been published within this topic receiving 446310 citations. The topic is also known as: KR & KR².


Papers
More filters
Book ChapterDOI
01 Jan 2006
TL;DR: In this paper, a 3D laser range finder and scan matching method for the robot Kurt3D is presented, where surface attributes are extracted and incorporated in a forest of search trees in order to associate the data.
Abstract: A basic task of rescue robot systems is mapping of the environment. Localizing injured persons, guiding rescue workers and excavation equipment requires a precise 3D map of the environment. This paper presents a new 3D laser range finder and novel scan matching method for the robot Kurt3D [9]. Compared to previous machinery [12], the apex angle is enlarged to 360°. The matching is based on semantic information. Surface attributes are extracted and incorporated in a forest of search trees in order to associate the data, i.e., to establish correspondences. The new approach results in advances in speed and reliability.

113 citations

Book ChapterDOI
01 Jan 2007
TL;DR: A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols.
Abstract: Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com–putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

113 citations

Book ChapterDOI
08 Apr 2002
TL;DR: A semantic analysis of a recently proposed formalism for local reasoning, where a specification can concentrate on only those cells that a program accesses, shows the soundness and completeness of a rule that allows frame axioms, which describe invariant properties of portions of heap memory, to be inferred automatically.
Abstract: We present a semantic analysis of a recently proposed formalism for local reasoning, where a specification (and hence proof) can concentrate on only those cells that a program accesses. Our main results are the soundness and, in a sense, completeness of a rule that allows frame axioms, which describe invariant properties of portions of heap memory, to be inferred automatically; thus, these axioms can be avoided when writing specifications.

113 citations

Journal ArticleDOI
TL;DR: This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules.

113 citations

Journal ArticleDOI
TL;DR: The proposed algorithmic approach presents a viable option for efficiently traversing large‐scale, multiple thesauri (knowledge network) and can be adopted for automatic, multiple‐thesauri consultation.
Abstract: This paper presents a framework for knowledge discovery and concept exploration. In order to enhance the concept exploration capability of knowledge-based systems and to alleviate the limitations of the manual browsing approach, we have developed two spreading activation-based algorithms for concept exploration in large, heterogeneous networks of concepts (e.g., multiple thesauri). One algorithm, which is based on the symbolic AI paradigm, performs a conventional branch-and-bound search on a semantic net representation to identify other highly relevant concepts (a serial, optimal search process). The second algorithm, which is based on the neural network approach, executes the Hopfield net parallel relaxation and convergence process to identify “convergent” concepts for some initial queries (a parallel, heuristic search process). Both algorithms can be adopted for automatic, multiple-thesauri consultation. We tested these two algorithms on a large text-based knowledge network of about 13,000 nodes (terms) and 80,000 directed links in the area of computing technologies. This knowledge network was created from two external thesauri and one automatically generated thesaurus. We conducted experiments to compare the behaviors and performances of the two algorithms with the hypertext-like browsing process. Our experiment revealed that manual browsing achieved higher-term recall but lower-term precision in comparison to the algorithmic systems. However, it was also a much more laborious and cognitively demanding process. In document retrieval, there were no statistically significant differences in document recall and precision between the algorithms and the manual browsing process. In light of the effort required by the manual browsing process, our proposed algorithmic approach presents a viable option for efficiently traversing large-scale, multiple thesauri (knowledge network). © 1995 John Wiley & Sons, Inc.

113 citations


Network Information
Related Topics (5)
User interface
85.4K papers, 1.7M citations
82% related
Graph (abstract data type)
69.9K papers, 1.2M citations
81% related
Genetic algorithm
67.5K papers, 1.2M citations
79% related
Robot
103.8K papers, 1.3M citations
79% related
Fuzzy logic
151.2K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022192
2021390
2020528
2019566
2018509