scispace - formally typeset
Search or ask a question
Topic

Knowledge representation and reasoning

About: Knowledge representation and reasoning is a research topic. Over the lifetime, 20078 publications have been published within this topic receiving 446310 citations. The topic is also known as: KR & KR².


Papers
More filters
Journal ArticleDOI
TL;DR: The higraph, a general kind of diagramming object, forms a visual formalism of topological nature that is suited for a wide array of applications to databases, knowledge representation, and the behavioral specification of complex concurrent systems using the higraph-based language of statecharts.
Abstract: The higraph, a general kind of diagramming object, forms a visual formalism of topological nature. Higraphs are suited for a wide array of applications to databases, knowledge representation, and, most notably, the behavioral specification of complex concurrent systems using the higraph-based language of statecharts.

1,332 citations

Journal ArticleDOI
TL;DR: The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration, and the main international projects investigating the potential of the system for industrial exploitation are described.
Abstract: Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows one to express every property of finite structures that is decidable in the complexity class ΣP2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunction-free) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion.This article presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ΔP3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof.Furthermore, we illustrate the general architecture of the DLV system, which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.

1,306 citations

Journal ArticleDOI
TL;DR: It is argued that keeping in mind all five of these roles that a representation plays provides a usefully broad perspective that sheds light on some longstanding disputes and can invigorate both research and practice in the field.
Abstract: Although knowledge representation is one of the central and, in some ways, most familiar concepts in AI, the most fundamental question about it -- What is it? -- has rarely been answered directly. Numerous papers have lobbied for one or another variety of representation, other papers have argued for various properties a representation should have, and still others have focused on properties that are important to the notion of representation in general. In this article, we go back to basics to address the question directly. We believe that the answer can best be understood in terms of five important and distinctly different roles that a representation plays, each of which places different and, at times, conflicting demands on the properties a representation should have. We argue that keeping in mind all five of these roles provides a usefully broad perspective that sheds light on some longstanding disputes and can invigorate both research and practice in the field.

1,199 citations

Journal ArticleDOI
TL;DR: YAGO2 as mentioned in this paper is an extension of the YAGO knowledge base, in which entities, facts, and events are anchored in both time and space, and it contains 447 million facts about 9.8 million entities.

1,186 citations

Book
01 Jan 1989
TL;DR: In this paper, the authors combine the theoretical foundations of intelligent problem-solving with data structures and algorithms needed for its implementation, including logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG.
Abstract: From the Publisher: Combines the theoretical foundations of intelligent problem-solving with he data structures and algorithms needed for its implementation. The book presents logic, rule, object and agent-based architectures, along with example programs written in LISP and PROLOG. The practical applications of AI have been kept within the context of its broader goal: understanding the patterns of intelligence as it operates in this world of uncertainty, complexity and change. The introductory and concluding chapters take a new look at the potentials and challenges facing artificial intelligence and cognitive science. An extended treatment of knowledge-based problem-solving is given including model-based and case-based reasoning. Includes new material on: Fundamentals of search, inference and knowledge representation AI algorithms and data structures in LISP and PROLOG Production systems, blackboards, and meta-interpreters including planers, rule-based reasoners, and inheritance systems. Machine-learning including ID3 with bagging and boosting, explanation based learning, PAC learning, and other forms of induction Neural networks, including perceptrons, back propogation, Kohonen networks, Hopfield networks, Grossberg learning, and counterpropagation. Emergent and social methods of learning and adaptation, including genetic algorithms, genetic programming and artificial life. Object and agent-based problem solving and other forms of advanced knowledge representation

1,166 citations


Network Information
Related Topics (5)
User interface
85.4K papers, 1.7M citations
82% related
Graph (abstract data type)
69.9K papers, 1.2M citations
81% related
Genetic algorithm
67.5K papers, 1.2M citations
79% related
Robot
103.8K papers, 1.3M citations
79% related
Fuzzy logic
151.2K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022192
2021390
2020528
2019566
2018509