scispace - formally typeset
Search or ask a question
Topic

Knudsen number

About: Knudsen number is a research topic. Over the lifetime, 5052 publications have been published within this topic receiving 104278 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The isothermal DUGKS is extended to the nonisothermal case by adopting coupled mass and inertial energy distribution functions and the unstructured mesh is introduced to the discrete velocity space of C-DUGKS, such that more discrete velocity points can be arranged in the velocity regions that enclosure a large number of molecules.
Abstract: Discrete unified gas-kinetic scheme (DUGKS) is a multiscale numerical method for flows from continuum limit to free molecular limit, and is especially suitable for the simulation of multiscale flows, benefiting from its multiscale property. To reduce integration error of the DUGKS and ensure the conservation property of the collision term in isothermal flow simulations, a conserved-DUGKS (C-DUGKS) is proposed. On the other hand, both DUGKS and C-DUGKS adopt Cartesian-type discrete velocity space, in which Gaussian and Newton-Cotes numerical quadrature are used for calculating the macroscopic physical variables in low-speed and high-speed flows, respectively. However, the Cartesian-type discrete velocity space leads to huge computational cost and memory demand. In this paper, the isothermal C-DUGKS is extended to the nonisothermal case by adopting coupled mass and inertial energy distribution functions. Moreover, since the unstructured mesh, such as the triangular mesh in the two-dimensional case, is more flexible than the structured Cartesian mesh, it is introduced to the discrete velocity space of C-DUGKS, such that more discrete velocity points can be arranged in the velocity regions that enclose a large number of molecules, and only a few discrete velocity points need to be arranged in the velocity regions with a small amount of molecules in it. By using the unstructured discrete velocity space, the computational efficiency of C-DUGKS is significantly increased. A series of numerical tests in a wide range of Knudsen numbers, such as the Couette flow, lid-driven cavity flow, two-dimensional rarefied Riemann problem, and the supersonic cylinder flows, are carried out to examine the validity and efficiency of the present method.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the existence of the Knudsen minimum in microchannels of varying cross-sections has been investigated and the effect of geometrical cross-section and fluid properties on the kinematic properties of rarefied gas flow was investigated.
Abstract: Study of rarefied gas flow in converging and diverging cross sections is crucial to the development of micro-nozzles and micro-thrusters. In other practical cases too, a microchannel may not always be straight and may include diverging and converging sections in the flow path. In this context, isothermal rarefied gas flow in microchannels of longitudinally varying cross section is studied experimentally in this work. The primary objective is to investigate the existence of Knudsen minimum in microchannels of varying cross sections. The effect of geometrical cross section and fluid properties on the Knudsen minimum are also investigated by performing experiments on three divergence angles (4°, 8°, and 12°) and three different gases (argon, nitrogen, and oxygen) to prove the robustness of the result. The Knudsen minimum, which is one of the characteristic features of rarefied flows, is experimentally observed for the first time in a microchannel of varying cross section. The position of the Knudsen minimum (at Kn ≈ 1) is seen to depend only weakly on the divergence angle and fluid properties.

33 citations

Journal ArticleDOI
TL;DR: Water states and displacements can be investigated with thermogravimetry (TG) either in its classical or in the Knudsen version (where standard pans are replaced with knudsen cells).
Abstract: Water states and displacements can be investigated with thermogravimetry (TG) either in its classical or in the Knudsen version (where standard pans are replaced with Knudsen cells). The case of wheat flour dough is considered in various steps of bread making, namely, mixing, proofing, baking, staling. The split of DTG signals into various components (gaussian functions) support the assumption that the overall dough water is partitioned into various fractions. Few comments are devoted to water displacements during freezing.

33 citations

Journal ArticleDOI
TL;DR: In this paper, an example of a nonequilibrium ensemble is constructed, a Knudsen gas in a container whose walls are maintained at different temperatures, and an iteration procedure for finding the stationary velocity distribution is derived.
Abstract: An example of a nonequilibrium ensemble is constructed, a Knudsen gas in a container whose walls are maintained at different temperatures. The approach to a stationary state is investigated, and an iteration procedure for finding the stationary velocity distribution is derived. An explicit stationary solution is found for the case where a Knudsen accommodation coefficient completely characterizes the effect of gas collisions with the walls. The heat transport is found. A stochastic mathematical model which mimics in certain aspects the above system is investigated.

33 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
85% related
Heat transfer
181.7K papers, 2.9M citations
84% related
Turbulence
112.1K papers, 2.7M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
82% related
Particle
96.5K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023112
2022236
2021168
2020163
2019190
2018172