scispace - formally typeset
Search or ask a question
Topic

Kynurenine aminotransferase II

About: Kynurenine aminotransferase II is a research topic. Over the lifetime, 116 publications have been published within this topic receiving 14283 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions on the basis of the kynurenine pathway.
Abstract: The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.

1,097 citations

Journal Article
TL;DR: Whatever the specific nature of their physiological roles, the presence of an endogenous selective agonist and antagonist acting at NMDA receptors must continue to present exciting possibilities for understanding the pathological basis of several CNS disorders as well as developing new therapeutic approaches.
Abstract: In a little more than 10 years, the kynurenine metabolites of tryptophan have emerged from their former position as biochemical curiosities, to occupy a prominent position in research on the causes and treatment of several major CNS disorders. The pathway includes two compounds, quinolinic acid and kynurenic acid, which are remarkably specific in their pharmacological profiles: one is a selective agonist at receptors sensitive to NMDA, whereas the other is a selective antagonist at low concentrations at the strychnine-resistant glycine modulatory site associated with the NMDA receptor. It has been argued that these agents cannot be of physiological or pathological relevance because their normal extracellular concentrations, in the nanomolar range, are at least 3 orders of magnitude lower than those required to act at NMDA receptors. This is a facile argument, however, that ignores at least two possibilities. One is that both quinolinate and kynurenate may be present in very high concentrations locally at some sites in the brain that cannot be reflected in mean extracellular levels. Similar considerations apply to many neuroactive agents in the CNS. The fact that both compounds appear to be synthesised in, and thus emerge from, glial cells that are well recognised as enjoying a close physical and chemical relationship with some neurones in which the intercellular space may be severely restricted may support such a view. Certainly the realisation that NMDA receptors may not be fully saturated functionally with glycine would be consistent with the possibility that even quite low concentrations of kynurenate could maintain a partial antagonism at the glycine receptor. A second possibility is that there may be a subpopulation of NMDA receptors (or, indeed, for a quite different amino acid) that possesses a glycine modulatory site with a much lower sensitivity to glycine or higher sensitivity to kynurenate, making it more susceptible to fluctuations of endogenous kynurenine levels. Whatever the specific nature of their physiological roles, the presence of an endogenous selective agonist and antagonist acting at NMDA receptors must continue to present exciting possibilities for understanding the pathological basis of several CNS disorders as well as developing new therapeutic approaches. An imbalance in the production or removal of either of these substances would be expected to have profound implications for brain function, especially if that imbalance were present chronically.(ABSTRACT TRUNCATED AT 400 WORDS)

936 citations

Journal ArticleDOI
TL;DR: It is reported that kynurenine, kynurenic acid, nicotinic acid do not excite neurones in the cerebral cortex, but that quinolinic acid is an effective excitant.

810 citations

Journal ArticleDOI
TL;DR: It is demonstrated that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.
Abstract: The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (≥4 min) of cultured hippocampal neurons to KYNA (≥100 nm) inhibited activation of somatodendritic α7 nAChRs; the IC50 for KYNA was ∼7 μm. The inhibition of α7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on α7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic α7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than α7 nAChRs to KYNA. The IC50 values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 μm) were ∼15 and 235 μm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing α4β2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

764 citations

Journal ArticleDOI
TL;DR: The kynurenine pathway is the main pathway for tryptophan metabolism and generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites.
Abstract: At-a-glance The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.

713 citations


Network Information
Related Topics (5)
Glutamate receptor
33.5K papers, 1.8M citations
77% related
Dopamine
45.7K papers, 2.2M citations
73% related
Hippocampus
34.9K papers, 1.9M citations
71% related
Agonist
53.7K papers, 1.9M citations
69% related
Protein subunit
33.2K papers, 1.7M citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20215
20203
20192
20184
20176
20166