Topic
Lactobacillus acidophilus
About: Lactobacillus acidophilus is a research topic. Over the lifetime, 6769 publications have been published within this topic receiving 194023 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences and proposed reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties.
Abstract: The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
1,496 citations
TL;DR: The concept of photochemical sterilization was introduced in this article, where microorganisms were killed photoelectrochemically with semiconductor powder (platinum-loaded titanium oxide, TiO2/Pt).
Abstract: We report the novel concept of photochemical sterilization. Microbial cells were killed photoelectrochemically with semiconductor powder (platinum-loaded titanium oxide, TiO2/Pt). Coenzyme A, (CoA) in the whole cells was photo-electrochemically oxidized and, as a result, the respiration of cells was inhibited. Inhibition of respiratory activity caused death of the cells. Lactobacillus acidophilus, Saccharomyces cerevisiae and Escherichia coli (103 cells/ml respectively) were completely sterilized when they were incubated with TiO2/Pt particles under metal halide lamp irradiation for 60–120 min.
1,317 citations
TL;DR: Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients and by sonication of yogurt bacteria.
Abstract: A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.
1,034 citations
TL;DR: The paper also reviews the literature explaining, in essence, the concept of ‘therapeutic minimum’ levels and the importance of the survival of probiotic microorganisms in food products.
Abstract: This paper reviews the history of the development of probiotics and the effect on the human gastrointestinal microecology. Furthermore, the application of probiotics to yogurt, commonly referred to as bio-yogurt and the effectiveness of yogurt as probiotic carrier food are also discussed. The paper also reviews the literature explaining, in essence, the concept of ‘therapeutic minimum’ levels and the importance of the survival of probiotic microorganisms in food products. The production of bio-yogurt, survival of probiotic species in yogurt during retail storage, technical considerations for incorporating probiotic microorganisms into yogurt, starter culture technology and enumeration of the probiotic organisms are also reviewed.
861 citations
TL;DR: Myeloperoxidase, at high concentrations, exerted an antibacterial effect on L. acidophilus in the absence of added halide, which also was temperature- and catalase-sensitive, and suggests that, under the conditions employed, the antibacterial properties of a weak acid extract of guinea pig leukocytes is due, in part, to its peroxid enzyme content, particularly if a halide is present in the reaction mixture.
Abstract: An antibacterial effect of myeloperoxidase, a halide, such as iodide, bromide, or chloride ion, and H2O2 on Escherichia coli or Lactobacillus acidophilus is described. When L. acidophilus was employed, the addition of H2O2 was not required; however, the protective effect of catalase suggested that, in this instance, H2O2 was generated by the organisms. The antibacterial effect was largely prevented by preheating the myeloperoxidase at 80 C or greater for 10 min or by the addition of a number of inhibitors; it was most active at the most acid pH employed (5.0). Lactoperoxidase was considerably less effective than was myeloperoxidase when chloride was the halide employed. Myeloperoxidase, at high concentrations, exerted an antibacterial effect on L. acidophilus in the absence of added halide, which also was temperature- and catalase-sensitive. Peroxidase was extracted from intact guinea pig leukocytes by weak acid, and the extract with peroxidase activity had antibacterial properties which were similar, in many respects, to those of the purified preparation of myeloperoxidase. Under appropriate conditions, the antibacterial effect was increased by halides and by H2O2 and was decreased by catalase, as well as by cyanide, azide, Tapazole, and thiosulfate. This suggests that, under the conditions employed, the antibacterial properties of a weak acid extract of guinea pig leukocytes is due, in part, to its peroxidase content, particularly if a halide is present in the reaction mixture. A heat-stable antibacterial agent or agents also appear to be present in the extract.
819 citations