Topic
Lactobacillus casei
About: Lactobacillus casei is a research topic. Over the lifetime, 5657 publications have been published within this topic receiving 151599 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients and by sonication of yogurt bacteria.
Abstract: A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.
1,034 citations
TL;DR: The results suggest that different species of Lactobacillus exert very different DC activation patterns and, furthermore, at least one species may be capable of inhibiting activities of other species in the genus.
Abstract: Dendritic cells (DC) play a pivotal immunoregulatory role in the Th1, Th2, and Th3 cell balance and are present throughout the gastrointestinal tract. Thus, DC may be targets for modulation by gut microbes, including ingested probiotics. In the present study, we tested the hypothesis that species of Lactobacillus, important members of the gut flora, differentially activate DC. Bone marrow-derived murine DC were exposed to various lethally irradiated Lactobacillus spp. and resultant culture supernatants were analyzed for IL-6, IL-10, IL-12, and TNF-alpha. Substantial differences were found among strains in the capacity to induce IL-12 and TNF-alpha production in the DC. Similar but less pronounced differences were observed among lactobacilli in the induction of IL-6 and IL-10. Although all strains up-regulated surface MHC class II and B7-2 (CD86), which is indicative of DC maturation, those lactobacilli with greatest capacity to induce IL-12 were most effective. Remarkably, Lactobacillus reuteri DSM12246, a poor IL-12 inducer, inhibited IL-12, IL-6, and TNF-alpha induction by the otherwise strong cytokine inducer L. casei CHCC3139, while IL-10 production remained unaltered. In analogous fashion, L. reuteri reduced L. casei-induced up-regulation of B7-2. These results suggest that different species of Lactobacillus exert very different DC activation patterns and, furthermore, at least one species may be capable of inhibiting activities of other species in the genus. Thus, the potential exists for Th1/Th2/Th3-driving capacities of the gut DC to be modulated according to composition of gut microflora, including ingested probiotics.
904 citations
TL;DR: The targeting of DC-SIGN by certain probiotic bacteria might explain their beneficial effect in the treatment of a number of inflammatory diseases, including atopic dermatitis and Crohn's disease.
Abstract: Background Lactobacilli are probiotic bacteria that are frequently tested in the management of allergic diseases or gastroenteritis. It is hypothesized that these probiotics have immunoregulatory properties and promote mucosal tolerance, which is in part mediated by regulatory T cells (Treg cells). On the basis of pathogenic or tissue-specific priming, dendritic cells (DC) acquire different T cell–instructive signals and drive the differentiation of naive T H cells into either T H 1, T H 2, or regulatory effector T cells. Objective We studied in what way different species of lactobacilli prime human DCs for their ability to drive Treg cells. Methods Human monocyte-derived DCs were cultured in vitro with lactobacilli of different species. Results Two different species of lactobacilli, Lactobacillus reuteri and Lactobacillus casei , but not Lactobacillus plantarum , prime monocyte-derived DCs to drive the development of Treg cells. These Treg cells produced increased levels of IL-10 and were capable of inhibiting the proliferation of bystander T cells in an IL-10–dependent fashion. Strikingly, both L reuteri and L casei , but not L plantarum , bind the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Blocking antibodies to DC-SIGN inhibited the induction of the Treg cells by these probiotic bacteria, stressing that ligation of DC-SIGN can actively prime DCs to induce Treg cells. Conclusions The targeting of DC-SIGN by certain probiotic bacteria might explain their beneficial effect in the treatment of a number of inflammatory diseases, including atopic dermatitis and Crohn's disease.
742 citations
TL;DR: Molecular typing methods such as pulsed-field gel electrophoresis, repetitive polymerase chain reaction, and restriction fragment length polymorphism are extremely valuable for specific characterization and detection of such strains selected for application as probiotics.
Abstract: Lactic acid bacteria are among the most important probiotic microorganisms typically associated with the human gastrointestinal tract. Traditionally, lactic acid bacteria have been classified on the basis of phenotypic properties, eg, morphology, mode of glucose fermentation, growth at different temperatures, lactic acid configuration, and fermentation of various carbohydrates. Studies based on comparative 16S ribosomal RNA sequencing analysis, however, showed that some taxa generated on the basis of phenotypic features do not correspond with the suggested phylogenetic relations. Thus, some species are not readily distinguishable by phenotypic characteristics. This is especially true for the so-called Lactobacillus acidophilus group, the Lactobacillus casei and Lactobacillus paracasei group, and some bifidobacteria, strains of which have been introduced in many probiotic foods, eg, the novel yogurt-like commodities. Consequently, modern molecular techniques, including polymerase chain reaction-based and other genotyping methods, have become increasingly important for species identification or for the differentiation of probiotic strains. Probiotic strains are selected for potential application on the basis of particular physiologic and functional properties, some of which may be determined in vitro. The classification and identification of a probiotic strain may give a strong indication of its typical habitat and origin. The species, or even genus name, may also indicate the strain's safety and technical applicability for use in probiotic products. Molecular typing methods such as pulsed-field gel electrophoresis, repetitive polymerase chain reaction, and restriction fragment length polymorphism are extremely valuable for specific characterization and detection of such strains selected for application as probiotics.
737 citations
TL;DR: The result indicates that early nutritional repletion after rehydration causes no mucosal disruption and is beneficial for recovery from diarrhea, and it is further suggested that Lactobacillus GG in the form of fermented milk or freeze-dried powder is effective in shortening the course of acute diarrhea.
Abstract: To determine the effect of a human Lactobacillus strain (Lactobacillus casei sp strain GG, Gefilac) on recovery from acute diarrhea (82% rotavirus), 71 well-nourished children between 4 and 45 months of age were studied. After oral rehydration, the patients randomly received either Lactobacillus GG-fermented milk product, 125 g (10(10-11) colony-forming units) twice daily (group 1); Lactobacillus GG freeze-dried powder, one dose (10(10-11) colony-forming units) twice daily (group 2); or a placebo, a pasteurized yogurt (group 3) 125 g twice daily; each diet was given for 5 days, in addition to normal full diet otherwise free of fermented dairy products. The mean (SD) duration of diarrhea after commencing the therapy was significantly shorter in group 1 (1.4 [0.8] days) and in group 2 (1.4 [0.8] days) than in group 3 (2.4 [1.1] days); F = 8.70, P less than 0.001. After rehydration, each dietary group maintained a positive weight trend. The urinary lactulose-mannitol recovery ratios (means [95% confidence intervals]) on admission were 0.09 (0.03, 0.24) in group 1, 0.12 (0.07, 0.22) in group 2, and 0.08 (0.04, 0.18) in group 3; no significant alterations in intestinal permeability were observed at retesting after 2 days of realimentation. The result indicates that early nutritional repletion after rehydration causes no mucosal disruption and is beneficial for recovery from diarrhea. It is further suggested that Lactobacillus GG in the form of fermented milk or freeze-dried powder is effective in shortening the course of acute diarrhea.
730 citations