scispace - formally typeset
Search or ask a question

Showing papers on "Lambda phage published in 2012"


Journal ArticleDOI
27 Jan 2012-Science
TL;DR: In this paper, the authors examined how a virus, bacteriophage λ, evolved to infect its host, Escherichia coli, through a novel pathway, and showed the complex interplay between genomic processes and ecological conditions that favor the emergence of evolutionary innovations.
Abstract: The processes responsible for the evolution of key innovations, whereby lineages acquire qualitatively new functions that expand their ecological opportunities, remain poorly understood. We examined how a virus, bacteriophage λ, evolved to infect its host, Escherichia coli, through a novel pathway. Natural selection promoted the fixation of mutations in the virus’s host-recognition protein, J, that improved fitness on the original receptor, LamB, and set the stage for other mutations that allowed infection through a new receptor, OmpF. These viral mutations arose after the host evolved reduced expression of LamB, whereas certain other host mutations prevented the phage from evolving the new function. This study shows the complex interplay between genomic processes and ecological conditions that favor the emergence of evolutionary innovations.

418 citations


Journal ArticleDOI
TL;DR: Direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET is described.
Abstract: Functional genomics requires facile methods to recover sequences of interest. Fu et al. show that the phage proteins RecE and RecT mediate recombination between linear DNA fragments and can facilitate natural product discovery. Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.

368 citations


Journal ArticleDOI
TL;DR: Novel DNA integration strategies are explored that exploit activation or inactivation of genes leading to a selectable phenotype, and asymmetrical regions of homology to control the order of recombination events to open the way to reliable integration of DNA including large synthetic constructs in diverse microorganisms.
Abstract: Most bacteria can only be transformed with circular plasmids, so robust DNA integration methods for these rely upon selection of single-crossover clones followed by counter-selection of double-crossover clones. To overcome the limited availability of heterologous counter-selection markers, here we explore novel DNA integration strategies that do not employ them, and instead exploit (i) activation or inactivation of genes leading to a selectable phenotype, and (ii) asymmetrical regions of homology to control the order of recombination events. We focus here on the industrial biofuel-producing bacterium Clostridium acetobutylicum, which previously lacked robust integration tools, but the approach we have developed is broadly applicable. Large sequences can be delivered in a series of steps, as we demonstrate by inserting the chromosome of phage lambda (minus a region apparently unstable in Escherichia coli in our cloning context) into the chromosome of C. acetobutylicum in three steps. This work should open the way to reliable integration of DNA including large synthetic constructs in diverse microorganisms.

184 citations


Journal ArticleDOI
15 Nov 2012-Viruses
TL;DR: The present state of research on the interaction of bacteriophage λ and its E. coli receptor, LamB is reviewed to review the role of spatiotemporal dynamics and the importance of stochasticity from hidden variables in the infection outcomes.
Abstract: The initial step of viral infection is the binding of a virus onto the host cell surface. This first viral-host interaction would determine subsequent infection steps and the fate of the entire infection process. A basic understating of the underlining mechanism of initial virus-host binding is a prerequisite for establishing the nature of viral infection. Bacteriophage λ and its host Escherichia coli serve as an excellent paradigm for this purpose. λ phages bind to specific receptors, LamB, on the host cell surface during the infection process. The interaction of bacteriophage λ with the LamB receptor has been the topic of many studies, resulting in wealth of information on the structure, biochemical properties and molecular biology of this system. Recently, imaging studies using fluorescently labeled phages and its receptor unveil the role of spatiotemporal dynamics and divulge the importance of stochasticity from hidden variables in the infection outcomes. The scope of this article is to review the present state of research on the interaction of bacteriophage λ and its E. coli receptor, LamB.

102 citations


Journal ArticleDOI
TL;DR: This work demonstrates that the iron‐sulfur cluster biosynthesis pathway in Escherichia coli exerts a protective effect during lambda phage infection, while a tRNA thiolation pathway enhances viral infection, and shows that tRNALys uridine 34 modification inhibits PRF to influence the ratio of lambda phages.
Abstract: Viral infection depends on a complex interplay between host and viral factors. Here, we link host susceptibility to viral infection to a network encompassing sulfur metabolism, tRNA modification, competitive binding, and programmed ribosomal frameshifting (PRF). We first demonstrate that the iron-sulfur cluster biosynthesis pathway in Escherichia coli exerts a protective effect during lambda phage infection, while a tRNA thiolation pathway enhances viral infection. We show that tRNALys uridine 34 modification inhibits PRF to influence the ratio of lambda phage proteins gpG and gpGT. Computational modeling and experiments suggest that the role of the iron-sulfur cluster biosynthesis pathway in infection is indirect, via competitive binding of the shared sulfur donor IscS. Based on the universality of many key components of this network, in both the host and the virus, we anticipate that these findings may have broad relevance to understanding other infections, including viral infection of humans.

47 citations


Journal ArticleDOI
TL;DR: The biochemical function of gp74 as an HNH endonuclease is defined and provided a platform for determining the role ofgp74 in life cycle of the bacteriophage HK97.
Abstract: The last gene in the genome of the bacteriophage HK97 encodes the protein gp74. We present data in this article that demonstrates, for the first time, that gp74 possesses HNH endonuclease activity. HNH endonucleases are small DNA binding and digestion proteins characterized by two His residues and an Asn residue. We demonstrate that gp74 cleaves lambda phage DNA at multiple sites and that gp74 requires divalent metals for its endonuclease activity. We also present intrinsic tryptophan fluorescence data that show direct binding of Ni2+ to gp74. The activity of gp74 in the presence of Ni2+ is significantly decreased below neutral pH, suggesting the presence of one or more His residues in metal binding and/or DNA digestion. Surprisingly, this pH-dependence of activity is not seen with Zn2+, suggesting a different mode of binding of Zn2+ and Ni2+. This difference in activity may result from binding of a second Zn2+ ion by a putative zinc finger in gp74 in addition to binding of a Zn2+ ion by the HNH motif. These studies define the biochemical function of gp74 as an HNH endonuclease and provide a platform for determining the role of gp74 in life cycle of the bacteriophage HK97.

28 citations


01 Jan 2012
TL;DR: In this chapter, recent advances in the understanding of mechanisms of bacteriophage l development are summarized and discussed and studies on phage DNA injection, prophage maintenance and induction, and lysis of the host cell will be presented.
Abstract: Bacteriophage l, rediscovered in the early 1950s, has served as a model in molecular biology studies for decades. Although currently more complex organisms and more complicated biological systems can be studied, this phage is still an excellent model to investigate principles of biological processes occurring at the molecular level. In fact, very few other biological models provide possibilities to examine regulations of biological mechanisms as detailed as performed with l. In this chapter, recent advances in our understanding of mechanisms of bacteriophage l development are summarized and discussed. Particularly, studies on (i) phage DNA injection, (ii) molecular bases of the lysis-versus-lysogenization decision and the lysogenization process itself, (iii) prophage maintenance and induction, (iv), l DNA replication, (v) phage-encoded recombination systems, (vi) transcription antitermination, (vii) formation of the virion structure, and (viii) lysis of the host cell, as published during several past years, will be presented.

16 citations


Journal ArticleDOI
10 May 2012-PLOS ONE
TL;DR: The results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence.
Abstract: Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop+ oriλ+ sequence.

9 citations



Journal ArticleDOI
TL;DR: Investigations unveiled that excpDNA is transient in both quality and quantity, with stability lasting no more than several hours, and Lambda lysogens constructed on endA recA mutants are presented for potential pipelines in delivery to other competent proficient microbes.
Abstract: Escherichia coli lyses by lambda phage propagation. Circular plasmid DNA was present during E. coli lysis as an extracellular plasmid DNA (excpDNA) that was stable enough to transform coexisting competent Bacillus subtilis cells. Detailed investigations unveiled that excpDNA is transient in both quality and quantity, with stability lasting no more than several hours. A survey using E. coli lambda lysogens with various genetic backgrounds demonstrated that the loss of Endonuclease I (ΔendA::kan) conferred extraordinary stability upon excpDNA for as long as 48 h. Studies on endA mutants suggested that excpDNA remained localized in cell debris, in contrast to E. coli genome DNA, which diffused into medium at an early point in lysis. Lambda lysogens constructed on endA recA mutants are presented for potential pipelines in delivery to other competent proficient microbes.

3 citations


Proceedings ArticleDOI
TL;DR: This work has recently developed an improved method to measure single phage lambda DNA packaging using dual-trap optical tweezers and pre-stalled motor-DNA-procapsid complexes and is applying this method to test proposed mechanisms for the sensor that triggers termination.
Abstract: The genomes of many dsDNA viruses are replicated by a mechanism that produces a long concatemer of multiple genomes. These viruses utilize multifunctional molecular motor complexes referred to as "terminases" that can excise a unit genome length of DNA and package it into preformed viral shells. Remarkably, the terminase motor can initiate packaging at the appropriate start point, translocate DNA, sense when a sufficient length has been packaged, and then switch into a mode where it arrests and cleaves the DNA to release a filled virus particle. We have recently developed an improved method to measure single phage lambda DNA packaging using dual-trap optical tweezers and pre-stalled motor-DNA-procapsid complexes. We are applying this method to test proposed mechanisms for the sensor that triggers termination; specifically a velocity-monitor model vs. energy-monitor model vs. capsid-filling monitor model.