scispace - formally typeset
Search or ask a question
Topic

Lambda phage

About: Lambda phage is a research topic. Over the lifetime, 1609 publications have been published within this topic receiving 84675 citations. The topic is also known as: Enterobacteria phage lambda.


Papers
More filters
Journal ArticleDOI
TL;DR: High level synthesis in Escherichia coli of mature human fibroblast interferon is obtained using a plasmid vector designed to allow easy coupling of a DNA coding region to the initiator AUG of the replicase gene of the RNA phage MS2 cloned downstream of phage lambda's leftward promoter.
Abstract: We have obtained high level synthesis in Escherichia coli of mature human fibroblast interferon using a plasmid vector that was designed to allow easy coupling of a DNA coding region to the initiator AUG of the replicase gene of the RNA phage MS2 cloned downstream of phage lambda's leftward promoter. The activity of the promoter can be regulated by temperature. Induced cells accumulated the interferon up to 4% of the total cellular protein. The biological activity of the product amounted to 4 X 10(9) international units per litre of culture. The synthesis of human fibroblast interferon was shown to drastically inhibit the growth rate of the bacterial host.

100 citations

Journal ArticleDOI
TL;DR: A GATC site located between the early E. coli promoters and the coding sequences of the first T7 protein made after infection is not methylated before the protein is synthesized, a result supporting the idea that only certain proteins are permitted access to the entering T7 DNA.
Abstract: Translocation of bacteriophage T7 DNA from the capsid into the cell has been assayed by measuring the time after infection that each GATC site on the phage genome is methylated by cells containing high levels of DNA adenine methylase. Methylation at GATC sites on T7 DNA renders both the infecting genome and any newly synthesized molecules sensitive to the restriction enzyme DpnI. In a normal infection at 30 degrees C, translocation of the T7 genome into the cell takes between 9 and 12 min. In contrast, translocation of the entire phage lambda genome or of a T7 genome ejected from a lambda capsid can be detected within the first minute of infection. Entry of the leading end of the T7 genome occurs by a transcription-independent mechanism that brings both Escherichia coli and T7 promoters into the cell. Further translocation of the genome normally involves transcription by the RNA polymerases of both E. coli and T7; the rates of DNA translocation into the cell when catalyzed by each enzyme are comparable to the estimated rates of transcription of the respective enzymes. A GATC site located between the early E. coli promoters and the coding sequences of the first T7 protein made after infection is not methylated before the protein is synthesized, a result supporting the idea (B. A. Moffatt and F. W. Studier, J. Bacteriol. 170:2095-2105, 1988) that only certain proteins are permitted access to the entering T7 DNA. In the absence of transcription, the genomes of most T7 strains do not completely enter the cell. However, the entire genome of a mutant that lacks bp 3936 to 808 of T7 DNA enters the cell in a transcription-independent process at an average overall rate of 50 bp per s.

100 citations

Journal ArticleDOI
TL;DR: A plaque-forming derivative of phage lambda that contains sequences from bacteriophage Mu enabling it to integrate into the Escherichia coli chromosome by means of the Mu transposition system is isolated.
Abstract: We isolated a plaque-forming derivative of phage lambda, lambda placMu1 , that contains sequences from bacteriophage Mu enabling it to integrate into the Escherichia coli chromosome by means of the Mu transposition system. The Mu DNA carried by this phage includes both attachment sites as well as the cI, ner (cII), and A genes. Lambda placMu1 also contains the lacZ gene, deleted for its transcription and translation initiation signals, and the lacY gene of E. coli, positioned next to the terminal 117 base pairs from the S end of Mu. Because this terminal Mu sequence is an open reading frame fused in frame to lacZ, the phage can create lacZ protein fusions in a single step when it integrates into a target gene in the proper orientation and reading frame. To demonstrate the use of this phage, we isolated lacZ fusions to the malB locus. These showed the phenotypes and regulation expected for malB fusions and could be used to isolate specialized transducing phages carrying the entire gene fusion as well as an adjacent gene (malE). They were found to be genetically stable and rarely (less than 10(-7] gave rise to secondary Lac+ insertions. We also isolated insertions into high-copy-number plasmids. The physical structure of these phage-plasmid hybrids was that expected from a Mu-dependent insertion event, with the lambda placMu prophage flanked by the Mu attachment sites. Lac+ insertions into a cloned recA gene were found at numerous positions and produced hybrid proteins whose sizes were correlated with the position of the fusions in recA.

99 citations

Journal ArticleDOI
TL;DR: The phiSITE database of gene regulation in bacteriophages contains detailed information about more than 700 experimentally confirmed or predicted regulatory elements (promoters, operators, terminators and attachment sites), and the system provides full text search for regulatory elements, graphical visualization of phage genomes and several export options.
Abstract: We have developed phiSITE, database of gene regulation in bacteriophages. To date it contains detailed information about more than 700 experimentally confirmed or predicted regulatory elements (promoters, operators, terminators and attachment sites) from 32 bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. The database is manually curated, the data are collected mainly form scientific papers, cross-referenced with other database resources (EMBL, UniProt, NCBI taxonomy database, NCBI Genome, ICTVdb, PubMed Central) and stored in SQL based database system. The system provides full text search for regulatory elements, graphical visualization of phage genomes and several export options. In addition, visualizations of gene regulatory networks for five phages (Bacillus phage GA-1, Enterobacteria phage lambda, Enterobacteria phage Mu, Enterobacteria phage P2 and Mycoplasma phage P1) have been defined and made available. The phiSITE is accessible at http://www.phisite.org/.

99 citations

Journal ArticleDOI
TL;DR: The amino acid sequence of CBP showed homology to the cap-binding PB2 protein of influenza virus, and the DNA sequence obtained from recombinant lambda phage inserts was found to code for all but one peptide.
Abstract: The 25-kDa mRNA cap-binding protein (CBP) involved in translation was purified by affinity chromatography from human erythrocytes and rabbit reticulocytes. The sequences of eight human and seven rabbit tryptic and V8 proteolytic peptides were determined. Based on the peptide sequence data, oligodeoxynucleotide probes were synthesized and used to screen human fibroblast and lymphocyte lambda cDNA libraries. The DNA sequence obtained from recombinant lambda phage inserts was found to code for all but one peptide. A 23-base oligonucleotide was synthesized based on the DNA sequence and used to prime synthesis of cDNA from human placental mRNA to construct a third library in lambda gt10. Screening with a 22-base oligonucleotide, whose sequence was upstream from the 23-base primer, yielded numerous recombinant phages with approximately equal to 250-base inserts. The 1900-base-pair cDNA sequence compiled from all phage inserts appeared to represent the entire primary sequence of CBP (Mr 25,117). Blot analysis of human placental and HeLa mRNA revealed multiple CBP mRNA species ranging from 1925 to 2250 bases. The amino acid sequence of CBP showed homology to the cap-binding PB2 protein of influenza virus.

99 citations


Network Information
Related Topics (5)
Mutant
74.5K papers, 3.4M citations
88% related
Transcription (biology)
56.5K papers, 2.9M citations
87% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
RNA
111.6K papers, 5.4M citations
85% related
DNA
107.1K papers, 4.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20226
20219
20209
20195
20188
20177