scispace - formally typeset
Search or ask a question
Topic

Land use

About: Land use is a research topic. Over the lifetime, 57073 publications have been published within this topic receiving 1147665 citations. The topic is also known as: usage of lands.


Papers
More filters
Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

OtherDOI
01 Jan 1976
TL;DR: The framework of a national land use and land cover classification system is presented for use with remote sensor data and uses the features of existing widely used classification systems that are amenable to data derived from re-mote sensing sources.
Abstract: The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The pro-posed system uses the features of existing widely used classification systems that are amenable to data derived from re-mote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in US Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.

4,154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined responses to land use under different management strategies and that employs response variables that have greater diagnostic value than many of the aggregated measures in current use.
Abstract: ▪ Abstract Local habitat and biological diversity of streams and rivers are strongly influenced by landform and land use within the surrounding valley at multiple scales. However, empirical associations between land use and stream response only varyingly succeed in implicating pathways of influence. This is the case for a number of reasons, including (a) covariation of anthropogenic and natural gradients in the landscape; (b) the existence of multiple, scale-dependent mechanisms; (c) nonlinear responses; and (d) the difficulties of separating present-day from historical influences. Further research is needed that examines responses to land use under different management strategies and that employs response variables that have greater diagnostic value than many of the aggregated measures in current use. In every respect, the valley rules the stream. H.B.N. Hynes (1975)

3,151 citations

Journal ArticleDOI
TL;DR: In this article, the influence of land use changes on soil carbon stocks was reviewed and a meta-analysis of these data from 74 publications was conducted, which indicated that soil C stocks decline after land use change from pasture to plantation (−10%), native forest to plantations (−13), native forests to crop (−42), and pasture to crop (+59%), while the reverse process usually increased soil carbon and vice versa.
Abstract: The effects of land use change on soil carbon stocks are of concern in the context of international policy agendas on greenhouse gas emissions mitigation. This paper reviews the literature for the influence of land use changes on soil C stocks and reports the results of a meta analysis of these data from 74 publications. The meta analysis indicates that soil C stocks decline after land use changes from pasture to plantation (−10%), native forest to plantation (−13%), native forest to crop (−42%), and pasture to crop (−59%). Soil C stocks increase after land use changes from native forest to pasture (+ 8%), crop to pasture (+ 19%), crop to plantation (+ 18%), and crop to secondary forest (+ 53%). Wherever one of the land use changes decreased soil C, the reverse process usually increased soil carbon and vice versa. As the quantity of available data is not large and the methodologies used are diverse, the conclusions drawn must be regarded as working hypotheses from which to design future targeted investigations that broaden the database. Within some land use changes there were, however, sufficient examples to explore the role of other factors contributing to the above conclusions. One outcome of the meta analysis, especially worthy of further investigation in the context of carbon sink strategies for greenhouse gas mitigation, is that broadleaf tree plantations placed onto prior native forest or pastures did not affect soil C stocks whereas pine plantations reduced soil C stocks by 12–15%.

3,039 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
88% related
Sustainable development
101.4K papers, 1.5M citations
86% related
Climate change
99.2K papers, 3.5M citations
85% related
Sustainability
129.3K papers, 2.5M citations
85% related
Soil water
97.8K papers, 2.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,864
20223,757
20212,920
20202,921
20192,865