scispace - formally typeset
Search or ask a question
Topic

Lanosterol

About: Lanosterol is a research topic. Over the lifetime, 1239 publications have been published within this topic receiving 36737 citations. The topic is also known as: (3β)-lanosta-8,24-dien-3-ol & (3β,20R)-lanosta-8,24-dien-3-ol.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that exogenous lanosterol acts in the sterol biosynthetic pathway from acetate to cholesterol and it was responsible for a higher resumption of meiosis in porcine oocytes cultured in vitro.

12 citations

Journal ArticleDOI
TL;DR: The growth of both yeasts in the presence of ketoconazole led to a decrease by 85% of the ergosterol content while the levels of lanosterol and eburicol increased, suggesting that in the biosynthetic pathway of ergosterols in Schizosaccharomyces species, the transmethylation process on the C-24 may occur directly on lanosterols and not only on zymosterol.
Abstract: Study of the plasma membrane sterol composition in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces octosporus revealed the presence of ergosterol, lanosterol, dehydroergosterol, fecosterol, episterol and 24-methylene-24,25-dihydrolanosterol (eburicol), a C-31 derivative. The growth of both yeasts in the presence of ketoconazole led to a decrease by 85% of the ergosterol content while the levels of lanosterol and eburicol increased. This suggests that in the biosynthetic pathway of ergosterol in Schizosaccharomyces species, the transmethylation process on the C-24 may occur directly on lanosterol and not only on zymosterol. On the other hand, it cannot be excluded that in the genus Schizosaccharomyces two routes exist from lanosterol to ergosterol: the classical one via a direct C-14, C-4 demethylation of lanosterol and the second one via the formation of a C-31 derivative followed by demethylations.

12 citations

Journal Article
TL;DR: Neither higher dosage nor upregulation of the gene encoding the cytochrome P- 450 lanosterol 14 alpha-demethylase (CYP51A1 or P-450LDM) was responsible for fluconazole resistance.
Abstract: We studied six clinical isolates of Candida albicans. All six isolates showed high level resistance to fluconazole (minimum inhibitory concentrations 64 microg/ml) with varying degrees of cross-resistance to other azoles but not to amphotericin B. Neither higher dosage nor upregulation of the gene encoding the cytochrome P- 450 lanosterol 14 alpha-demethylase (CYP51A1 or P-450LDM) was responsible for fluconazole resistance. The resistant and the susceptible isolates accumulated similar amounts of azoles. To examine whether resistance to fluconazole in these clinical isolates of C. albicans is mediated by an altered target of azole action, we cloned the structural gene encoding P-450LDM from the fluconazole resistant isolates. The amino acid sequences of the P-450LDMs from the isolates were deduced from the gene sequences and compared to the P-450LDM sequence of the fluconazole-susceptible C. albicans B311. The enzymes from the clinical isolates showed 2 to 7 amino acid variations scattered across the molecules encompassing 10 different loci. One-half of the amino acid changes obtained were conserved substitutions (E116D, K143R, E266D, D278E, R287K) compared to the susceptible strain. Non-conserved substitutions were T128K, R267H, S405F, G450E and G464S, three of which are in and around the hemebinding region of the molecule. R287K is the only amino acid change that was found in all six clinical isolates. One or more of these mutational alterations may lead to the expression of an azole-resistant enzyme.

12 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Ligand (biochemistry)
26.5K papers, 1M citations
85% related
Peptide
48.6K papers, 1.5M citations
85% related
Enzyme
32.8K papers, 1.1M citations
85% related
Binding site
48.1K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202261
202120
202023
201914
201822