scispace - formally typeset
Search or ask a question
Topic

Lanosterol

About: Lanosterol is a research topic. Over the lifetime, 1239 publications have been published within this topic receiving 36737 citations. The topic is also known as: (3β)-lanosta-8,24-dien-3-ol & (3β,20R)-lanosta-8,24-dien-3-ol.


Papers
More filters
Journal ArticleDOI
TL;DR: Improve the production of individual GAs by engineering the biosynthetic pathway of GAs in G. lucidum through the overexpression of squalene synthase (SQS) gene, suggesting that increased GA biosynthesis may result from a higher expression of those genes.

53 citations

Journal ArticleDOI
TL;DR: Structural and functional knowledge of S. cerevisiae CYP 51 shows that the F129 residue in Mucorales CYP51 F5 is responsible for intrinsic resistance of MucOrales against short-tailed triazoles, with a V to A substitution in Helix I also potentially playing a role.
Abstract: Mucormycoses are emerging and potentially lethal infections. An increase of breakthrough infections has been found in cohorts receiving short-tailed azoles prophylaxis (e.g. voriconazole (VCZ)). Although VCZ is ineffective in vitro and in vivo, long-tailed triazoles such as posaconazole remain active against mucormycetes. Our goal was to validate the molecular mechanism of resistance to short-tailed triazoles in Mucorales. The paralogous cytochrome P450 genes (CYP51 F1 and CYP51 F5) of Rhizopus arrhizus, Rhizopus microsporus, and Mucor circinelloides were amplified and sequenced. Alignment of the protein sequences of the R. arrhizus, R. microsporus, and M. circinelloides CYP51 F1 and F5 with additional Mucorales species (n = 3) and other fungi (n = 16) confirmed the sequences to be lanosterol 14α-demethylases (LDMs). Sequence alignment identified a pan-Mucorales conservation of a phenylalanine129 substitution in all CYP51 F5s analyzed. A high resolution X-ray crystal structure of Saccharomyces cerevisiae LDM in complex with VCZ was used for generating a homology model of R. arrhizus CYP51 F5. Structural and functional knowledge of S. cerevisiae CYP51 shows that the F129 residue in Mucorales CYP51 F5 is responsible for intrinsic resistance of Mucorales against short-tailed triazoles, with a V to A substitution in Helix I also potentially playing a role.

53 citations

Journal ArticleDOI
TL;DR: The monocyclic N-alkyl-hydroxypiperidine appears to be a potent and promising tool to study sterol biosynthesis regulation and current mechanisms postulated for 2,3-oxidosqualene cyclization.
Abstract: Monocyclic and tricyclic compounds possessing a nitrogen atom situated at a position corresponding to the carbenium ion of high energy intermediates or transition states involved during cyclization of 2,3-oxidosqualene to tetra- and pentacyclic triterpenes have been synthesized. These compounds were tested as inhibitors of 2,3-oxidosqualene cycloartenol, lanosterol-, and beta(alpha)-amyrin-cyclases in vitro and in vivo, and their affinity was compared to that of formerly synthesized 8-aza-bicyclic compounds [Taton et al. (1986) Biochem. Biophys. Res. Commun. 138, 764-770]. A monocyclic N-alkyl-hydroxypiperidine was shown to be the strongest inhibitor of the series upon cycloartenol-cyclase (I50 = 1 microM) from maize embryos but was much less effective on the beta(alpha)-amyrin-cyclases from Rubus fruticosus suspension cultures or pea cotyledons. In contrast, 13-aza-tricyclic derivatives displayed little inhibition on 2,3-oxidosqualene cycloartenol-, lanosterol-, and beta(alpha)-amyrin-cyclases. The obtained data exemplify the differences existing in the cyclization process between cycloartenol- (lanosterol-) cyclases on one hand and beta(alpha)-amyrin-cyclases on the other. The results are discussed with respect to current mechanisms postulated for 2,3-oxidosqualene cyclization. Because of its activity in vivo and in vitro the monocyclic N-alkyl-hydroxypiperidine appears to be a potent and promising tool to study sterol biosynthesis regulation.

53 citations

Journal ArticleDOI
TL;DR: The rat testis-specific CYP51 mRNA arises from the use of an upstream polyadenylation site and is restricted to germ cells, being most abundant in elongating spermatids in stages VII–XIV, whereas somatic CYP 51 transcripts are present in all cells.
Abstract: Mammalian CYP51 encodes lanosterol 14alpha-demethylase (P45014DM) that is involved in the postsqualene part of cholesterol biosynthesis. This enzyme removes the 14alpha-methyl group from lanosterol and 24,25-dihydrolanosterol producing intermediates in cholesterol biosynthesis, the oocyte meiosis-activating sterols FF-MAS and MAS-412. Human and rat CYP51 messenger RNAs (mRNAs) are expressed in all tissues, with highest levels in the testis due to the presence of an additional shorter CYP51 transcript in this tissue. In situ hybridization shows the highest CYP51 mRNA levels in seminiferous tubules, with only background levels in Leydig cells. The rat testis-specific CYP51 mRNA arises from the use of an upstream polyadenylation site and is restricted to germ cells, being most abundant in elongating spermatids in stages VII-XIV, whereas somatic CYP51 transcripts are present in all cells. In contrast, the mRNA levels of squalene synthase are maximal in round spermatids, and no germ cell-specific transcript is observed. The rat male germ cell-specific CYP51 transcript is translated in vitro to two proteins of approximately 55 and 53.5 kDa. CYP51 activity is higher in protein extracts of testes and germ cells of sexually mature rats than in prepubertal animals, in which postmeiotic germ cells are not yet present. This shows increased capacity for the production of MAS sterols by male germ cells that have already completed meiosis, suggesting that they serve a role different from meiosis activation.

53 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Ligand (biochemistry)
26.5K papers, 1M citations
85% related
Peptide
48.6K papers, 1.5M citations
85% related
Enzyme
32.8K papers, 1.1M citations
85% related
Binding site
48.1K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202261
202120
202023
201914
201822