scispace - formally typeset
Search or ask a question
Topic

Laplace operator

About: Laplace operator is a research topic. Over the lifetime, 13227 publications have been published within this topic receiving 239400 citations. The topic is also known as: Laplacian & Laplacian operator.


Papers
More filters
Book
19 Jun 1986
TL;DR: This paper presents the results of an analysis of the "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions and its applications to Mixed Approximation and Homogeneous Stokes Equations.
Abstract: I. Mathematical Foundation of the Stokes Problem.- 1. Generalities on Some Elliptic Boundary Value Problems.- 1.1. Basic Concepts on Sobolev Spaces.- 1.2. Abstract Elliptic Theory.- 1.3. Example 1: Dirichlet's Problem for the Laplace Operator.- 1.4. Example 2: Neumann's Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- s Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- 2. Theory of the Steady-State Navier-Stokes Equations.- 2.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 2.2. The Stream Function Formulation of the Homogeneous Problem..- 3. Approximation of Branches of Nonsingular Solutions.- 3.1. An Abstract Framework.- 3.2. Approximation of Branches of Nonsingular Solutions.- 3.3. Application to a Class of Nonlinear Problems.- 3.4. Non-Differentiable Approximation of Branches of Nonsingular Solutions.- 4. Numerical Analysis of Centered Finite Element Schemes.- 4.1. Formulation in Primitive Variables: Methods Using Discontinuous Pressures.- 4.2. Formulation in Primitive Variables: the Case of Continuous Pressures.- 4.3. Mixed Incompressible Methods: the "Stream Function-Vorticity" Formulation.- 4.4. Remarks on the "Stream Function-Gradient of Velocity Tensor" Scheme.- 5. Numerical Analysis of Upwind Schemes.- 5.1. Upwinding in the Stream Function-Vorticity Scheme.- 5.2. Error Analysis of the Upwind Scheme.- 5.3. Approximating the Pressure with the Upwind Scheme.- 6. Numerical Algorithms.- 2.11. General Methods of Descent and Application to Gradient Methods.- 2.12. Least-Squares and Gradient Methods to Solve the Navier-Stokes Equations.- 2.13. Newton's Method and the Continuation Method.- References.- Index of Mathematical Symbols.

5,572 citations

Proceedings Article
03 Jan 2001
TL;DR: The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering.
Abstract: Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.

4,557 citations

Proceedings Article
09 Dec 2003
TL;DR: These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold.
Abstract: Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) – a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.

4,318 citations

Journal ArticleDOI
TL;DR: In this article, the square root of the Laplacian (−△) 1/2 operator was obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition.
Abstract: The operator square root of the Laplacian (−△) 1/2 can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this paper we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.

2,696 citations

Book
23 Jan 2012
TL;DR: In this paper, the boundary behavior of Cauchy integral functions is investigated and the results of the Schwarz Lemma are discussed, as well as the Zeros of Nevanlinna functions.
Abstract: Preliminaries.- The Automorphisms of B.- Integral Representations.- The Invariant Laplacian.- Boundary Behavior of Poisson Integrals.- Boundary Behavior of Cauchy Integrals.- Some Lp-Topics.- Consequences of the Schwarz Lemma.- Measures Related to the Ball Algebra.- Interpolation Sets for the Ball Algebra.- Boundary Behavior of H?-Functions.- Unitarily Invariant Function Spaces.- Moebius-Invariant Function Spaces.- Analytic Varieties.- Proper Holomorphic Maps.- The -Problem.- The Zeros of Nevanlinna Functions.- Tangential Cauchy-Riemann Operators.- Open Problems.

2,202 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
92% related
Partial differential equation
70.8K papers, 1.6M citations
91% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
91% related
Invariant (mathematics)
48.4K papers, 861.9K citations
90% related
Differential equation
88K papers, 2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,168
2021817
2020902
2019760
2018713