scispace - formally typeset
Search or ask a question
Topic

Laplacian matrix

About: Laplacian matrix is a research topic. Over the lifetime, 5716 publications have been published within this topic receiving 167307 citations. The topic is also known as: Kirchhoff matrix & admittance matrix.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a geometrically motivated algorithm for representing high-dimensional data, based on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold and the connections to the heat equation.
Abstract: One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low-dimensional manifold embedded in a high-dimensional space. Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for representing the high-dimensional data. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality-preserving properties and a natural connection to clustering. Some potential applications and illustrative examples are discussed.

7,210 citations

Book
03 Dec 1996
TL;DR: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigen values and quasi-randomness
Abstract: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigenvalues and quasi-randomness Expanders and explicit constructions Eigenvalues of symmetrical graphs Eigenvalues of subgraphs with boundary conditions Harnack inequalities Heat kernels Sobolev inequalities Advanced techniques for random walks on graphs Bibliography Index.

6,948 citations

Journal ArticleDOI
TL;DR: A modularity matrix plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations, and a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong are proposed.
Abstract: We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as ``modularity'' over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

4,559 citations

Proceedings Article
03 Jan 2001
TL;DR: The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering.
Abstract: Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.

4,557 citations

Journal ArticleDOI
TL;DR: A Nyquist criterion is proved that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability, and a method for decentralized information exchange between vehicles is proposed.
Abstract: We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability.

4,377 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Linear system
59.5K papers, 1.4M citations
82% related
Markov chain
51.9K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023223
2022433
2021416
2020550
2019450
2018440