Topic
Large eddy simulation
About: Large eddy simulation is a research topic. Over the lifetime, 14916 publications have been published within this topic receiving 332345 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.
6,747 citations
TL;DR: In this paper, a subgrid scale model is proposed for large eddy simulations in complex geometries, which accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations.
Abstract: A new subgrid scale model is proposed for Large Eddy Simulations in complex geometries. This model which is based on the square of the velocity gradient tensor accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations. Moreover it recovers the proper y
3 near-wall scaling for the eddy viscosity without requiring dynamic procedure. It is also shown from a periodic turbulent pipe flow computation that the model can handle transition.
2,855 citations
TL;DR: In this paper, the authors proposed the DES97 model, denoted DES97 from here on, which can exhibit an incorrect behavior in thin boundary layers and shallow separation regions, when the grid spacing parallel to the wall becomes less than the boundary-layer thickness.
Abstract: Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ∥ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.
2,065 citations
TL;DR: Germano et al. as discussed by the authors generalized the dynamic subgrid-scale (SGS) model for the large eddy simulation (LES) of compressible flows and transport of a scalar.
Abstract: The dynamic subgrid-scale (SGS) model of Germano et al. (1991) is generalized for the large eddy simulation (LES) of compressible flows and transport of a scalar. The model was applied to the LES of decaying isotropic turbulence, and the results are in excellent agreement with experimental data and direct numerical simulations. The expression for the SGS turbulent Prandtl number was evaluated using direct numerical simulation (DNS) data in isotropic turbulence, homogeneous shear flow, and turbulent channel flow. The qualitative behavior of the model for turbulent Prandtl number and its dependence on molecular Prandtl number, direction of scalar gradient, and distance from the wall are in accordance with the total turbulent Prandtl number from the DNS data.
1,588 citations