scispace - formally typeset



About: Laser is a(n) research topic. Over the lifetime, 353128 publication(s) have been published within this topic receiving 4379972 citation(s). The topic is also known as: light amplification by stimulated emission of radiation.

More filters
Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,414 citations

Journal ArticleDOI
Abstract: A sensitive single-beam technique for measuring both the nonlinear refractive index and nonlinear absorption coefficient for a wide variety of materials is reported. The authors describe the experimental details and present a comprehensive theoretical analysis including cases where nonlinear refraction is accompanied by nonlinear absorption. In these experiments, the transmittance of a sample is measured through a finite aperture in the far field as the sample is moved along the propagation path (z) of a focused Gaussian beam. The sign and magnitude of the nonlinear refraction are easily deduced from such a transmittance curve (Z-scan). Employing this technique, a sensitivity of better than lambda /300 wavefront distortion is achieved in n/sub 2/ measurements of BaF/sub 2/ using picosecond frequency-doubled Nd:YAG laser pulses. >

7,137 citations

Journal ArticleDOI
Arthur Ashkin1
Abstract: Micron-sized particles have been accelerated and trapped in stable optical potential wells using only the force of radiation pressure from a continuous laser. It is hypothesized that similar accelerations and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions. The implications for isotope separation and other applications of physical interest are discussed.

4,112 citations

21 Mar 1997
Abstract: Physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GaN p-Type GaN InGaN Zn and Si co-doped InGaN/AlGaN double-heterostructure blue and blue-green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGaN MQW LDs latest results - lasers with self-organized InGaN quantum dots

3,794 citations

Journal ArticleDOI
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

3,732 citations

Network Information
Related Topics (5)
Optical fiber

167K papers, 1.8M citations

89% related
Quantum dot

76.7K papers, 1.9M citations

83% related
Raman spectroscopy

122.6K papers, 2.8M citations

81% related
Scanning electron microscope

74.7K papers, 1.3M citations

81% related
Band gap

86.8K papers, 2.2M citations

81% related
No. of papers in the topic in previous years