scispace - formally typeset
Search or ask a question
Topic

Laser

About: Laser is a research topic. Over the lifetime, 353128 publications have been published within this topic receiving 4379972 citations. The topic is also known as: light amplification by stimulated emission of radiation.


Papers
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
14 Mar 2002-Nature
TL;DR: The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.
Abstract: Extremely narrow optical resonances in cold atoms or single trapped ions can be measured with high resolution. A laser locked to such a narrow optical resonance could serve as a highly stable oscillator for an all-optical atomic clock. However, until recently there was no reliable clockwork mechanism that could count optical frequencies of hundreds of terahertz. Techniques using femtosecond-laser frequency combs, developed within the past few years, have solved this problem. The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.

2,612 citations

Journal ArticleDOI
TL;DR: In this article, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration, and a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high density core of the capsule by the ponderomotive force associated with high intensity laser light.
Abstract: Ultrahigh intensity lasers can potentially be used in conjunction with conventional fusion lasers to ignite inertial confinement fusion (ICF) capsules with a total energy of a few tens of kilojoules of laser light, and can possibly lead to high gain with as little as 100 kJ. A scheme is proposed with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high‐density fuel configuration. Second, a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high‐density core of the capsule by the ponderomotive force associated with high‐intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high‐intensity laser–plasma interactions, which then propagate from critical density to this high‐density core. This new scheme also drastically reduces the difficulty of the implosion, and thereby allows lower quality fabrication and less stringent beam quality and symmet...

2,596 citations

Journal ArticleDOI
TL;DR: HBN is shown to be a promising material for compact ultraviolet laser devices because it has a direct bandgap in the ultraviolet region and evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided.
Abstract: The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.

2,550 citations

Journal ArticleDOI
TL;DR: In this paper, a Phenomenological Approach to Diode Lasers is presented, where mirrors and Resonators are used for diode luminaries, and coupled-mode theory is applied.
Abstract: Ingredients. A Phenomenological Approach to Diode Lasers. Mirrors and Resonators for Diode Lasers. Gain and Current Relations. Dynamic Effects. Perturbation and Coupled--Mode Theory. Dielectric Waveguides. Photonic Integrated Circuits. Appendices. Index.

2,550 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Raman spectroscopy
122.6K papers, 2.8M citations
81% related
Scanning electron microscope
74.7K papers, 1.3M citations
81% related
Band gap
86.8K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20238,153
202217,159
20217,219
202011,517
201913,976