scispace - formally typeset
Search or ask a question
Topic

Laser pumping

About: Laser pumping is a research topic. Over the lifetime, 21114 publications have been published within this topic receiving 303015 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new type of semiconductor laser is studied, in which injected carriers in the active region are quantum mechanically confined in two or three dimensions (2D or 3D), and the effects of such confinements on the lasing characteristics are analyzed.
Abstract: A new type of semiconductor laser is studied, in which injected carriers in the active region are quantum mechanically confined in two or three dimensions (2D or 3D). Effects of such confinements on the lasing characteristics are analyzed. Most important, the threshold current of such laser is predicted to be far less temperature sensitive than that of conventional lasers, reflecting the reduced dimensionality of electronic state. In the case of 3D‐QW laser, the temperature dependence is virtually eliminated. An experiment on 2D quantum well lasers is performed by placing a conventional laser in a strong magnetic field (30 T) and has demonstrated the predicted increase of T0 value from 144 to 313 °C.

3,069 citations

Journal ArticleDOI
28 Apr 2000-Science
TL;DR: The carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser is stabilized by using the powerful tools of frequency-domain laser stabilization to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Abstract: We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.

2,499 citations

Journal ArticleDOI
R. Lang1, Kohroh Kobayashi1
TL;DR: In this paper, the effects of external optical feedback on the semiconductor laser properties have been examined, i.e., return of a portion of the laser output from a reflector external to the laser cavity.
Abstract: Influences on the semiconductor laser properties of external optical feedback, i.e., return of a portion of the laser output from a reflector external to the laser cavity, have been examined. Experimental observations with a single mode laser is presented with analysis based on a compound cavity laser model, which has been found to explain essential features of the experimental results. In particular, it has been demonstrated that a laser with external feedback can be multistable and show hysteresis phenomena, analogous to those of non-linear Fabry-Perot resonator. It has also been shown that the dynamic properties of injection lasers are significantly affected by external feedback, depending on interference conditions between returned light and the field inside the laser diode.

2,462 citations

Journal ArticleDOI
Charles H. Henry1
TL;DR: In this article, a theory of the spectral width of a single-mode semiconductor laser is presented and used to explain the recent measurements of Fleming and Mooradian on AlGaAs lasers.
Abstract: A theory of the spectral width of a single-mode semiconductor laser is presented and used to explain the recent measurements of Fleming and Mooradian on AlGaAs lasers. They found the linewidth to be inversely proportional to power and to have a value of 114 MHz at 1 mW per facet. This value is 30 times greater than can be explained by existing theories. The enhanced linewidth is attributed to the variation of the real refractive index n' with carrier density. Spontaneous emission induces phase and intensity changes in the laser field. The restoration of the laser to its steady-state intensity results in changes in the imaginary part of the refractive index \Delta n" . These changes are accompanied by changes in the real part of the refractive index \Delta n' , which cause additional phase fluctuations and line broadening. The linewidth enhancement is shown to be 1 + \alpha^{2} , where \alpha = \Delta n'/\Delta n" . A value of \alpha \approx 5.4 , needed to explain the observed linewidth, is close to the experimental values of a of 4.6 and 6.2.

2,293 citations

Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: This work reports a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity.
Abstract: Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultraviolet, and can be used to link an unknown optical frequency to a radio or microwave frequency reference. Since their inception, frequency combs have triggered substantial advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation; subsequently, frequency combs have been generated using the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here we report a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain makes it possible to generate discrete comb modes over a 500-nm-wide span (approximately 70 THz) around 1,550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3 x 10(-18). In contrast to femtosecond mode-locked lasers, this work represents a step towards a monolithic optical frequency comb generator, allowing considerable reduction in size, complexity and power consumption. Moreover, the approach can operate at previously unattainable repetition rates, exceeding 100 GHz, which are useful in applications where access to individual comb modes is required, such as optical waveform synthesis, high capacity telecommunications or astrophysical spectrometer calibration.

1,950 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
93% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
89% related
Resonator
76.5K papers, 1M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202228
2021149
2020244
2019284
2018272